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In this paper, we examine the performance of certain short option trading strategies on the 

S&P500 with backtesting based on historical option price data. Some of these strategies show 

significant outperformance in relation to the S&P500 index. We seek to explain this 

outperformance by modeling the negative correlation between the S&P500 and its implied 

volatility (given by the VIX) and through Monte Carlo simulation. We also provide free testing 

software and give an introduction to its use for readers interested in running further backtests 

on their own. 
Keywords: 

Option-trading 

S&P500-index 

Implied volatility 

Realized volatility 

 

Introduction 

This paper is a follow-up to the papers “Modeling and Performance of Certain Put-Write Strategies” (Larcher, Del 

Chicca, and Szölgyenyi, 2013) and “A Comparison of Different Families of Put-Write Option Strategies” (Del Chicca 

and Larcher, 2012). In those, we analyzed the historical performance of certain put-write option strategies based on 

the S&P500 index during the time period from 1990 to 2010. Our aim was to support the assertion made by several 

authors (see for example (Day and Lewis, 1997), (Ungar and Moran, 2009) and (Santa-Clara and Saretto, 2009)) that 

put options on the S&P500 with strikes in a certain out-of-the-money range seem to be systematically overpriced. 

Consequently, certain put-write strategies, when carried out in a suitable form, show systematic outperformance (for 

example, in relation to the underlying as a benchmark). The assertions above are, in a certain sense, equivalent to the 

following statement: “The implied volatility of options (in a certain range) systematically overestimates the 

subsequently realized volatility of the S&P500.” The aims of the present paper are as follows: 

https://doi.org/10.35944/jofrp.2021.10.1.010
mailto:Gerhard.Larcher@jku.at
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– We will analyze the performance of the trading strategies studied in (Larcher, Del Chicca, and Szölgyenyi, 

2013), yet this time for the period from 2010 to 2020, and we will analyze the stability of the results compared 

with the results from before 2010. 

– (Jackwerth and Rubinstein, 1996) and (Bakshi and Kapadia, 2003) also discuss consistently higher at-the-

money implied volatilities compared to subsequently realized volatility, which would make selling options at-

the-money attractive. Thus, we will analyze a further class of strategies which are based not only on short put 

positions but also on short call positions at-the-money. Collectively, we will refer to this type of strategies as 

“Lambda strategies” (since an essential component in these strategies is to combine short positions in a put 

and a call with the same strike and the payoff function of such a combination shows the form of the Greek 

lambda letter, Λ, see Figure 8). In practice this strategy is often referred to as “short straddle”, however, as we 

really like the illustrative description, we use the term Lambda strategies. The theoretical investigation of this 

class of strategies is strongly motivated by the second author’s highly successful real-market trading using 

such strategies in the period from 2012 to 2020. 

– For both classes of trading strategies we provide free-to-use testing programs on www.lsqf.org. These 

programs enable readers to easily carry out many further tests on their own, for any choice of parameters. We 

will introduce these programs in this paper. 

– Finally – in addition to the real-data backtests – we seek to explain the outperformance of these strategies using 

a simulation approach based on a modeled dependence of the VIX (the S&P500 volatility index) on the S&P500. 

 

In section 2 we will first set out the theoretical background, introducing the basic structure of our trading strategies 

as well as the modeling and simulation approach, and then finish this part by drawing conclusions from this approach. 

Section 3 presents the updated performance data for the put-write strategies from (Larcher, Del Chicca, and 

Szölgyenyi, 2013) and introduces the testing program for these strategies as provided on www.lsqf.org . 

In section 4 we proceed with a comprehensive performance analysis of the Lambda strategies and explain the use 

of the corresponding software on www.lsqf.org. 

Section 5 concludes the present paper with a short summary. 

Implied vs. realized volatility, dependence of VIX and S&P500 and simulation of trading strategies 

What exactly do we mean by “over-estimation of the realized volatility by the implied volatility” and “dependence 

of the VIX and the S&P500”? 

In a certain sense, the value of the VIX gives the current average value of the implied volatilities of the S&P500 

based on S&P500 options with about one month to expiration. More details on how the VIX is calculated and how 

to correctly interpret its value can be found in the corresponding CBOE whitepaper12 or in Chapter 5 of the monograph 

(Larcher, 2020). The value of the VIX at a certain time t could, therefore, be seen as a forecast of the actually realized 

 
1 https://cdn.cboe.com/resources/vix/vixwhite.pdf 

 

http://www.lsqf.org/
http://www.lsqf.org/
http://www.lsqf.org/
http://www.lsqf.org/
https://cdn.cboe.com/resources/vix/vixwhite.pdf
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volatility of the S&P500 in the month following the time-point t, that is, in the time interval [𝑡, 𝑡 +
1

12
]. This time 

interval on average consists of about 20 trading days. 

What do we mean by the “realized volatility of the S&P500 in the time interval [𝑡, 𝑡 +
1

12
]”? We will define it here 

as the historical volatility of the S&P500 in that time interval calculated based on daily closing prices. 

With this definition we can then compare the historical values of these two quantities. (Koopman et al., 2005) also 

compared and evaluated different methods to estimate the realized volatility, but we will further restrict ourselves to 

the case of the implied volatility (and the VIX as a shortcut to this) as this is the type of volatility which gives us 

information about the options market. In Figure 1 we see the performance of the S&P500 from 2000 to 2020 (blue) 

and the relation between VIX (red) and the subsequently realized volatility (green) in this time period. In Figure 2 

we see the difference between VIX and realized volatility in absolute values, while Figure 3 shows the difference 

between VIX and realized volatility as a percentage of the realized volatility value. 

The picture we see is pretty clear: If we define “realized volatility” as we did above, then we are definitely looking 

at systematic over-estimation of realized volatility by the VIX. This fact is clearly illustrated especially in Figure 3 

and was also already recognized in (Jackwerth and Rubinstein, 1996). 

As regards the dependence between the S&P500 and its volatility index VIX, we can usually observe the following 

phenomenon: Sudden changes in the S&P500 are negatively related to corresponding changes in the VIX (i.e. the 

implied options volatility), e.g. see (French, Schwert, and Stambaugh, 1987). More casually speaking, an increase in 

the S&P500 mostly leads to a decrease in the value of the VIX, whereas a decrease of the S&P500 usually leads to a 

substantial increase of the VIX. To illustrate this fact, we show in Figure 4 – to give just one example – the 

performance of the S&P500 compared with the performance of the VIX in the turbulent time interval from 24 August 

2001 to 2 October 2001 (23 trading days). 

We can clearly see the negative correlation between the two graphs. It is tempting, of course, to model this 

dependence of the VIX on the S&P500. Some attempts suggest the following approach: Let us consider a time interval 

[0, T], and for arbitrary t ∈ [0, T] denote by St the value of the S&P500 at time t and by σt  the value of the VIX at 

time t. It turns out that for “not too large values of T” (say, up to one month) a dependence of the form σ𝑡 = σ0 ⋅

(
𝑆0

𝑆𝑡
)

𝑎
, with a = 4 comes surprisingly close to reality in most cases. To support this assertion, we illustrate the result 

of this modeling approach for the time period considered in Figure 4 (see Figure 5) and for some further randomly 

chosen time periods (see Figure 6) of 100 trading days (approximately five months) each. 
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Figure 1. Comparison of SPX (blue line), VIX (red line), and realized volatility (green line) from January 

2000 to December 2020 

 

Figure 2. Difference between VIX and realized volatility in absolute values 
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Figure 3. Difference between VIX and realized volatility as a percentage of the corresponding realized 

volatility 

 

Figure 4. Comparison of VIX (red) and SPX (green) in the period from 2001-08-24 to 2001-10-02 
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Figure 5. VIX (red) and 𝜎𝑡 = 𝜎0 ⋅ (
𝑆0

𝑆𝑡
)

4

 (green) for the time period from 2001-08-24 to 2001-10-2 

 

 

 

Figure 6. VIX (red) and 𝜎𝑡 = 𝜎0 ⋅ (
𝑆0

𝑆𝑡
)

4

 (green) for randomly chosen periods of 100 trading days 

 

In Figure 5 we see a very good correlation between the real performance of the VIX and its modeling by 

 𝜎𝑡 = 𝜎0 ⋅ (
𝑆0

𝑆𝑡
)

4
. Figure 6 shows quite a good correlation in most cases, at least in the first quarter of the period, 

whereas after that, the quality of the modeling deteriorates in some cases. 
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Based on this observation, we are going to run a simulation in the following for some of the trading strategies and 

will then investigate and backtest them in the subsequent parts, based on real historical option data. To this end we 

are going to introduce below the principal form of the two classes of trading strategies which we are focusing on here. 

The put-write strategy (principal structure) 

The basic idea of the put-write strategy is to repeatedly sell a put option at a pre-defined strike and make profit by 

gaining the premium. Whenever the underlying’s value is staying “high enough” (and no exit strategy is executed 

beforehand), we gain profit by this trade. In the preceding paper (Larcher, Del Chicca, and Szölgyenyi, 2013), 

however, it was recognized that it makes sense to add a securing long put position at a lower strike, since margin 

requirements are clearer in this case and we can trade more contracts in that case. Hence, the rules we are following 

for our strategy are: 

– We choose a fixed time period of length T (e.g. 2 months, 1 month, one week, two trading days, ...). 

– We trade SPX options with remaining time to expiration T at times 0, T, 2T, 3T, ...(or with the shortest possible 

time to expiration larger than or equal to T, and with new trading upon expiration of these options). 

– We always go short on put options with expiration T (or approximately T) and strike K1, and (in most cases) 

we go long on the same quantity of put options with the same expiration and with strike K2 < K1. In a few cases 

we do not buy a long position but open a naked short position. 

– So, upon entering the trade, we receive a positive premium of M USD, which is given by the price of the short 

position minus the price of the long position. 

– Our reference currency in all cases is the U.S. dollar (USD). 

– The quantity of put option contracts to be traded may change and depends on the currently available investment 

amount and on the strategy we are running and investigating in our backtests. 

– In some of the strategies the positions are held until expiration. Some of the strategies are equipped with an 

exit strategy, which means: All contracts are closed as soon as the losses from the two put positions (since the 

last trading day) exceed a certain pre-defined level. 

– The strike price K1 is chosen (depending on what strategy we are looking at) based on various parameters. It 

will always depend on the current value of the S&P500 (at the trading date), in some cases it will also depend 

on the value of the VIX or on a certain historical volatility. In other cases, it will depend on the price of the put 

options in question. 

– The strike K2 is chosen as a function of K1, e.g. of the form K2 = K1 −L or K2 = x·K1, with a fixed strike distance 

L or with x as a fixed factor less than or equal to 1. 

– The trading assumptions in each case (bid/ask prices, the exact trading time, transaction costs, setting of a 

“buffer”) are described in the section discussing the backtests of the put-write strategies. 
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Figure 7. profit function of a put short with securing long positions 

The Lambda strategy (principal structure) 

The Lambda strategy is also based on selling options, but instead of only selling put options, we also sell call options, 

and we always do this at-the-money. By looking at this basic structure we see that calm markets with little volatility 

would work best to keep the gained premium. We could again open long positions to limit losses (which is also 

looked at in this paper), or one could react to changing market environments by trading the underlying asset (or 

futures of it for keeping trading costs low). The second suggestion will not be followed in this paper but should be 

kept in mind for further research. The strict rules we follow in our backtests are as follows: 

– We choose a fixed time-period of length T (e.g. 2 months, 1 month, one week, two trading days, ...) 

– We trade SPX options with remaining time to expiration T at times 0, T, 2T, 3T,...(or with the shortest possible 

time to expiration larger than or equal to T and with new trading upon expiration of these options). 

– We always go short on put options with time to expiration T (or approximately T) and strike K1 as near the 

money as possible (i.e., with a strike as close as possible to the current value of the S&P500), and we always 

go short on the same quantity of call options with the same expiration and the same strike K1. 

– In some cases we go long on the same quantity of put options with the same expiration and with a strike K2 < 

K1. In some cases we go long on the same quantity of call options with the same expiration and with a strike 

K3 > K1. In some cases we go long on put options with strike K2 < K1 as well as on call options with strike K3 

> K1. In some cases we do not buy long positions but open only naked short positions. 

– So, upon entering the trade, we receive a positive premium of M USD, which is given by the price of the short 

positions minus the price of the long positions. 

K 2 K 1 
S ( T ) 
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– Our reference currency in all cases is the U.S. dollar (USD). 

– The quantity of put option contracts to be traded may change and depends on the currently available investment 

amount and on the strategy we are running and investigating in our backtests. 

– In some of the strategies the positions are held until expiration. Some of the strategies are equipped with an 

exit strategy, which means: All contracts are closed as soon as the losses from the call and put positions (since 

the last trading day) exceed a certain pre-defined level. 

– Now – in contrast to the put-write strategies – it is the strikes K2 and/or K3 of the long positions that are chosen 

based on various parameters (depending on what strategy we are looking at). They will always depend on the 

current value of the S&P500 (at the trading date); in some cases they will also depend on the value of the VIX 

or on a certain historical volatility, while in other cases they will depend on the prices of the put and/or call 

options in question. 

– The trading assumptions in each case (bid/ask prices, the exact trading time, transaction costs, setting of a 

“buffer”) are described in the section discussing the backtests of the Lambda strategies. 

 

 

Figure 8. profit function of a pure lambda (short straddle) without securing long positions at the money 

Simulations of the strategies 

In the following we will carry out simulations of some basic examples of the above put-write and Lambda strategies. 

The reason for presenting these simulations is twofold: 

– On the one hand we are going to illustrate that, if we work with the conventional Black-Scholes model and 

with fair Black-Scholes prices for the options, based on a constant volatility for the S&P500 price and the same 

constant value for the implied option volatility (used for pricing the options), then these strategies are generally 

just zero-sum games (as is to be expected). 

– On the other hand we are going to show that, if we model the implied volatility σt (used for pricing the options) 

during the time interval [0,T] not as a constant (equal to the fixed value σ), but for each single trading point nT 

S (0) S ( T ) 
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with the model 𝜎𝑛𝑇 = 𝜎 ⋅ (
𝑆0

𝑆𝑛𝑇
)

4
 which we introduced above and which seems to reflect the reality better than 

the assumption of constant volatility, then in this case, these strategies usually show a clear outperformance. 

This observation could serve as a further explanation of many results in the subsequent real-data backtests for the 

put-write strategies and the Lambda strategies, which also show a significant outperformance in many cases. For the 

simulation we use the following parameters and settings: 

– We do not use long positions, i.e. we work with naked short positions. 

– We study the performance of the strategies over a time interval of one year. 

– The trading intervals we choose are T = 3 days or T = 30 days. 

– At every trading date, we trade exactly one contract of the option combination (i.e. one short put contract for 

the put-write strategy and one short put contract together with one short call contract for the Lambda strategy). 

– The simulations will be carried out for the “no exit strategy” cases and for exit strategies of the form “if the 

losses resulting from the open option positions exceed a certain absolute dollar amount at any point during 

their lifetime, then all contracts are to be closed”. 

– In the simulations we do not work with transaction costs, nor with bid/ask spreads, nor with any trading buffer. 

– All tests will be carried out under the assumption of constant volatility over one trading year and dependence 

of the VIX on the S&P500 of the form 𝜎𝑡 = 𝜎0 ⋅ (
𝑆0

𝑆𝑡
)

4
. 

As our model for the S&P500 we are going to use the one-dimensional risk-neutral Black-Scholes model. 

That is, for the dynamics of the value St of the S&P500 at time t we have d𝑆𝑡 = 𝑆𝑡𝑟 ⋅ d𝑡 + 𝑆𝑡σ ⋅ d𝑊𝑡, where r is a 

constant risk-free interest rate on [0,T], Wt is a standard Brownian motion, and σ is the constant volatility over the 

trading year. Consequently, for all 0 ≤ t1 < t2 ≤ T we have 

𝑆𝑡2
= 𝑆𝑡1

⋅ exp ((𝑟 −
σ2

2
) (𝑡2 − 𝑡1) + σ√𝑡2 − 𝑡1 ⋅ ω) 

 

with a standard normally distributed random variable ω. The initial value S0 is assumed to be 3230 in all cases. If 

the entire trading period is given by [0,NT] with trading times at 0, T, 2T, ..., (N −1)T, then we simulate the S&P500 

values ST, S2T, ..., SNT  using this model. 

At each of these trading points nT we calculate the Black-Scholes price of the options needed for the trade. As 

input for the volatility, we use either 𝜎𝑛𝑇 = 𝜎 ⋅ (
𝑆0

𝑆𝑛𝑇
)

4
. 

For every choice of parameters, we carry out 5,000 simulations and calculate the average annual return, the 

standard deviation of the 5,000 simulated returns, and the largest loss and the largest profit. 

Simulation of the put-write strategies 

In our first simulation experiment we consider the put-write strategy without long positions and with a short strike 

K1, which is always chosen as a fixed percentage of the current S&P500 value S (at the moment of trading). For 

example, we choose K1 = 0.98 · S, or K1 = 0.9 · S, or K1 = S. 
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In Figure 9 we show one sample path (blue) for such a simulation together with the corresponding trading dates 

(T = 30, hence 12 trades in one year) and the strikes (red, K1 = 0.9 · S) of the short positions. 

 

Figure 9. Sample path (blue) together with various strike choices for the strategy’s different trading dates 

(red) 

A small selection of the (many) results obtained is listed in the following Table 1. In most cases we rounded the 

results to multiples of 1,000. 
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Table 1. Selection of results of put-write simulations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tendencies which can be deduced from our simulations (and which are supported by the sample values in Table 

1) are: 

– If we work with the assumption of constant implied volatility and no exit strategy, then the returns are around 

zero, regardless of the other parameters (zero-sum game). 

– If we work with the assumption of constant implied volatility and an exit strategy with a rather tight loss limit, 

then the returns are slightly positive. 

– If we work with the assumption of constant implied volatility and no exit strategy, then the standard deviation 

of the returns increases with the volatility of the underlying, and it also increases with increasing K1. 

r 𝝈 a T  

days 

K1 Exit average standard 

deviation 

Min Max 

0.01 0.2 none 30 0.98 S none -400 28.000 -117.000 81.000 

0.06 0.2 none 30 0.98 S none -600 29.000 -121.000 84.000 

0.01 0.6 none 30 0.98 S none -600 103.000 -469.000 712.000 

0.01 0.2 none 3 0.98 S none 300 15.000 -49.000 43.000 

0.01 0.2 none 30 0.90 S none -400 6.000 43.000 4.000 

0.01 0.2 none 30  S none -500 36.000 -98.000 109.000 

0.01 0.2 4 30 0.98 S none 9.400 29.000 -95.000 122.000 

0.06 0.2 4 30 0.98 S none 3.200 28.000 -95.000 161.000 

0 0.2 4 30 0.98 S none 11.900 30.000 -96.000 157.000 

0.01 0.6 4 30 0.98 S none 199.000 339.000 -519.000 1.170.000 

0.01 0.2 4 3 0.98 S none 40.000 92.000 -73.000 676.000 

0.01 0.2 4 30 0.90 S none 9.000 18.000 -27.000 138.000 

0.01 0.2 4 3 0.90 S none 4.700 28.000 0 632.000 

0.01 0.2 4 30  S none 8.900 29.000 -82.000 105.000 

0.01 0.2 4 3  S none 28.000 128.000 -260.000 723.000 

0.01 0.2 none 30 0.98 S -1.000 7.900 9.200 -12.000 42.000 

0.01 0.2 none 30 0.98 S -2.000 7.700 11.200 -24.000 43.000 

0.01 0.2 4 30 0.98 S -1.000 10.000 15.000 -12.000 103.000 

0.01 0.2 4 30 0.98 S -2.000 9.800 21.000 -24.000 99.000 
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– If we work with the assumption of dependent implied volatility (following our model with parameter a = 4) 

and no exit strategy, then the returns are systematically clearly positive. 

– If we work with the assumption of dependent implied volatility (following our model with parameter a = 4) 

and no exit strategy, then decreasing r leads to increasing returns. 

– If we work with the assumption of dependent implied volatility (following our model with parameter a = 4) 

and no exit strategy, then increasing σ leads to increasing returns. 

– If we work with the assumption of dependent implied volatility (following our model with parameter a = 4) 

and no exit strategy, then more frequent trading leads to increasing returns. 

– If we work with the assumption of dependent implied volatility (following our model with parameter a = 4) 

and no exit strategy, then a choice of K1 of about 2% below S yields significantly better results than a choice 

for K1 equal to S or about 10% below S. 

– If we work with the assumption of dependent implied volatility (following our model with parameter a = 4) 

and an exit strategy, then we get only slightly better results than in the case of constant implied volatility with 

an exit strategy. 

Simulation of the Lambda strategies 

The simulations for the Lambda strategy are carried out with the same principal basic model assumptions. In the 

simulations we do not work with long positions, i.e., we just short one put contract and one call contract with strike 

at the money at each trading date. We again provide a table (Table 2) with a small sample of simulation results for 

the Lambda strategy. 

We can deduce similar findings as in the case of the put-write strategies: 

– If we work with the assumption of constant implied volatility and no exit strategy, then the returns are around 

zero, regardless of the other parameters (zero-sum game). 

– If we work with the assumption of constant implied volatility and an exit strategy with a rather tight loss limit, 

then the returns are slightly positive. 

– If we work with the assumption of dependent implied volatility (following our model with parameter a = 4) 

and no exit strategy, then the returns are mostly clearly positive. 

– If we work with the assumption of dependent implied volatility (following our model with parameter a = 4) 

and no exit strategy, then decreasing r leads to increasing returns. 

– If we work with the assumption of dependent implied volatility (following our model with parameter a = 4) 

and no exit strategy, then increasing σ leads to strongly increasing returns. 

– If we work with the assumption of dependent implied volatility (following our model with parameter a = 4) 

and an exit strategy, then we get only slightly better results than in the case of constant implied volatility with 

an exit strategy. An exit bound of about -4,000 USD seems to give the best results. 

In general it seems that the Lambda strategy gives better average returns than the put-write strategies. 
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Table 2. Selection of results of Lambda simulations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now we will turn to the real-data backtests of the two classes of strategies for the time period from 2010 to 2020 

for the put-write strategies, and from 2012 to 2020 for the Lambda strategy. (The reason for the shorter testing interval 

for the Lambda strategy is that in this case, we also use the new type of weekly short-term options expiring on 

Monday, Wednesday and Friday of every week. These options are consistently available from 2012 onward only.) 

One goal of these backtests will be to establish whether the findings from the simulation experiments are generally 

borne out by the real-data backtests. 

 

r 𝝈 a T  

days 

Exit average standard 

deviation 

Min Max 

0.01 0.2 none 30 none -600 39.000 -172.000 124.000 

0.06 0.2 none 30 none -1.500 40.000 -172.000 115.000 

0 0.2 none 30 none 300 37.000 -171.000 101.000 

0.01 0.6 none 30 none -600 123.000 -567.000 314.000 

0.01 0.2 none 3 none -300 40.000 -130.000 113.000 

0.01 0.2 4 30 none 15.000 93.000 -340.000 447.000 

0.06 0.2 4 30 none -300 91.000 -305.000 288.000 

0 0.2 4 30 none 22.000 93.000 -250.000 326.000 

0.01 0.6 4 30 none 436.000 831.000 -2.600.000 2.600.000 

0.01 0.2 4 3 none 69.000 302.000 -560.000 1.570.000 

0.01 0.6 4 3 none 2.428.000 4.295.000 -5.573.000 18.556.000 

0.01 0.2 none 30 -1.000 11.000 13.000 -12.000 46.000 

0.01 0.2 4 30 -1.000 32.000 47.000 -12.000 204.000 

0.01 0.2 none 30 -2.000 11.000 20.000 -24.000 75.000 

0.01 0.2 4 30 -2.000 43.000 65.000 -24.000 295.000 

0.01 0.2 none 30 -4.000 11.000 22.000 -48.000 88.000 

0.01 0.2 4 30 -4.000 39.000 68.000 -48.000 213.000 

0.01 0.2 none 30 -5.000 15.900 25.000 -60.000 73.000 

0.01 0.2 4 30 -5.000 31.000 73.000 -60.000 292.000 

0.01 0.6 4 30 -4.000 222.000 342.000 -48.000 1.915.000 
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Real-data backtests for the put-write strategies 

Having presented the general idea of the put-write strategy in the previous section, we are now going to describe the 

detailed setting and execution of the strategy. We combine this with an explanation of the use of the accompanying 

software available on www.lsqf.org. The developed backtesting program provides an extensive interface allowing 

users to set up arbitrary combinations of parameters for our put-write strategies. The basic control parameters to be 

set by the user are 

• the available initial investment capital I 

• the period to be checked (start and end date) 

• the duration of each period 

• the formula for computing the short strike K1(s,v,h) depending on 

– the underlying value s 

– the value of the VIX as a percentage value v 

– the annualized historical volatility h of the previous 20 trading days 

• the formula for computing the long strike K2(k) based on the short strike k 

• the exit strategy 

The reason for only allowing strategies hedged by a long position is to avoid uncertainties regarding potential 

margin calls in the case of naked short positions. By combining a short put option at strike K1 with a long put option 

at strike K2 < K1 the maximum loss for this combination is given by K1 − K2, and therefore the required margin is also 

limited by that number. 

In addition to the basic parameters above, the user can choose additional parameters to run more sophisticated 

strategies or consider real-market frictions. 

Basic parameter settings and execution of the strategy 

The following steps are repeated in a loop starting at the given start date until the end date is reached. 

 

1. Determining the upcoming trading period 

In the previous paper, a period always started on the third Friday of a given month and ended on the subsequent 

month’s third Friday. For purposes of this approach the program on the website provides the “1-Month-Strategy” 

mode. In the last decade, however, the frequency of option expiry dates has increased enormously, allowing much 

more flexible choices of periods. For this reason the “Variable” mode was introduced, where users can choose a 

desired period length and the program will always search for options with expiration close to that chosen duration. In 

fact, it will choose the first expiration date greater than or equal to the desired period length. 

 

 

 

 

http://www.lsqf.org/
http://www.lsqf.org/
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2. Calculating the strikes 

The desired strikes for the short put and long put option, 𝐾1
̅̅ ̅ and 𝐾2

̅̅ ̅, are calculated based on the provided formulas. 

Except for the case of the “minimum premium” approach, which is introduced later, we always calculate the short 

strike 𝐾1
̅̅ ̅ first. There are three different ways to define the short strike: 

• 𝐾1
̅̅ ̅= x·s, where x is a fixed factor and s is the current price of the S&P500. E.g. 𝐾1

̅̅ ̅= 0.93·s. This is the most 

basic choice of the short strike. 

• 𝐾1
̅̅ ̅= (1−x·h)·s, where h is the S&P500’s historical annualized volatility of the last 20 trading days before the 

current trading date and x is a constant factor. The idea behind this approach is to adapt the risk to the past 

volatility observed in the market. A higher volatility leads to a lower choice of the short strike.  

E.g. 𝐾1
̅̅ ̅= (1 − 0.4 · h) · s 

• The third approach is similar to the above in that 𝐾1
̅̅ ̅is calculated based on the anticipated market volatility, 

using the current VIX value: 𝐾1
̅̅ ̅= (1 − x · v) · s, where 𝑣 =

𝑉𝐼𝑋

100
. E.g. 𝐾1

̅̅ ̅= (1 − 0.4 · v) · s 

The desired long strike 𝐾2
̅̅ ̅is defined depending on the short strike. The two typical types are 

• 𝐾2
̅̅ ̅= x · k, where x is a fixed percentage and k is the short strike 𝐾1

̅̅ ̅. E.g. 𝐾2
̅̅ ̅= 0.97 · k 

• 𝐾2
̅̅ ̅= k − x, where x is a fixed distance to the short strike k. E.g. 𝐾2

̅̅ ̅= k − 75 

It is required that 𝐾2
̅̅ ̅ < 𝐾1

̅̅ ̅, otherwise the strategy won’t make sense, since the cost of the long option would be 

higher than the premium earned from the short option. After defining the desired strikes  𝐾1
̅̅ ̅ and  𝐾2

̅̅ ̅, the options with 

the highest strike below the calculated strikes are determined and chosen for further execution of the strategy. With 

K1 and K2 we denote the actual strike of the chosen short and long put option. 

 

3. Determining the number of contracts to trade 

Before actually trading the short and long put contracts, we have to determine the number of contracts N to trade. We 

are assuming contracts of 100 units in all our tests. Our goal is to use as much of our available investment capital as 

possible. The maximal loss for our option combination at the time of expiration is 

N ·100·(K1−K2), therefore the required margin is also bounded by this value (for most brokers the required margin 

corresponds to exactly this value). 

In addition to the available investment capital we also gain a certain premium P at the beginning of the trade: P = 

100·N ·(P1−P2), where P1 and P2 are the respective prices of the short and the long put option at the beginning of the 

period. Therefore the following inequality has to hold: 

 

𝑁 ⋅ 100(𝐾1 − 𝐾2) ≤ 𝐼𝑐𝑢𝑟𝑟 + 𝑁 ⋅ 100(𝑃1 − 𝑃2), 

where Icurr is the available capital in the current period. This leads to the following formula for the maximal number 

of contracts: 

𝑁 = ⌊
𝐼𝑐𝑢𝑟𝑟

100((𝐾1 − 𝐾2) − (𝑃1 − 𝑃2))
⌋ 
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The prices P1 and P2 are calculated by averaging the last bid and ask price on the trading day on which we open 

the positions. Users can also choose a fixed distance to the averaged bid and ask price, e.g. they can state that 0.10 

USD is to be added to the averaged bid/ask price when buying an option, or that 0.10 USD is to be subtracted when 

selling an option. 

 

4. Checking for execution of an exit strategy 

To limit the risk of a total loss of the investment, each strategy can also be equipped with an exit strategy. This 

exit strategy takes effect as soon as the aggregate losses of the open put positions exceed a chosen threshold 

and leads to an immediate closing of all open positions. This threshold is defined by the user as a percentage 

of the currently invested amount. Since we cannot use intraday option price data for each trading day we have 

to use an approximation to the worst intraday value of that combination of options. In our backtesting program 

this is handled in a slightly different way than in the previous paper, where the implied volatility was 

calculated at the end of the day and different option prices were calculated for this implied volatility and for 

different underlying values on this date. In the new program we look at the short and long position’s high 

values on each day and calculate for each day the worst value of the open positions as 

 
 V = (high value of long put − high value of short put) · N · 100.  

 

The reason for looking at this value is based on the following: The value of our open positions in the portfolio is 

usually negative since the lower strike of the long position implies a lower price for the corresponding option. 

Therefore, the best scenario for us is for this difference to be almost zero, or at least as small as possible. This is the 

case when the underlying asset’s value is far greater than the strikes. On the other hand, the value V decreases more 

and more the lower the underlying asset’s value falls, which also leads to higher option prices. Additionally, it is 

reasonable to assume that the high values of the different put options occur at the same time, since they are all affected 

by the same underlying. Thus, it makes sense to compare the high values of the options to get the approximate “worst 

value” of our portfolio on a single day. 

Thus, when the user enters an exit threshold of y% for the invested capital, the following check is run for each 

day: 

𝐼𝑐𝑢𝑟𝑟 + earned premium at period start date + 𝑉 < 𝐼𝑐𝑢𝑟𝑟 (1 −
𝑦

100
) 

If this inequality is satisfied, the exit strategy is activated and all open positions are closed. It is assumed that the 

trader closed all positions when the loss threshold was reached. To provide for delays in closing the options, users 

can enter an additional loss margin of z% (buffer), which is added to the exit threshold. The loss then adds up to  

Icurr · (y% + z%). In this case the strategy moves on to the next period. If the above inequality is never met during the 

lifetime of the positions, the strategy is considered successful and the final outcome for the current trading period is 

determined in the next step. 

In the previous paper, exit strategies based on the underlying asset’s value were also allowed, but because they 

did not work to a sufficiently reliable degree, this option was not implemented in the new program. 
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5. Determining the outcome 

The final outcome of the strategy is dependent on the underlying asset’s closing value ST at expiration. The cases to 

consider are 

• ST > K1: Both option positions expire worthless, since the underlying value is above both strikes. Thus, the 

earned premium at the start of the period is kept as a profit. 

• K2 ≤ ST ≤ K1: The long position expires worthless, since K2 ≤ ST, however the short position has to be settled. 

Thus, (K1 − ST) · N · 100 has to be paid. 

• ST < K2: Both option positions have to be settled since the underlying value is below K1 and K2.  

Thus, (K1 − K2) · N · 100 has to be paid. 

In each case the earned premium N · 100(P1 − P2) has to be added in calculating the strategy’s final profit. 

Additional parameters 

In addition to the fundamental strategy parameters, users can also choose additional parameters for more sophisticated 

variants of the strategy or simply to take existing market restrictions (e.g. transaction costs) into account. 

 

Transaction costs 

The transaction costs per contract can be provided and are subtracted accordingly. Where an exit strategy is activated, 

the transaction costs are considered twice. 

Using the previous performance of the underlying asset in calculating the short strike In certain situations it seems 

useful, in calculating the short strike, to consider not only the current underlying value S0 but also the underlying 

asset’s price movement over the previous days. For example: Assume that, in the 5 trading days before the new period 

starts, the underlying price suddenly surges from 2000 to 2500. In this case the short strike would be calculated with 

the current underlying value of 2500. The trader may, however, want to be a bit more cautious in such circumstances. 

For these scenarios the program offers an option to take the last n trading days of the underlying into account, with n 

∈ {1,...,15}. The threshold value that is actually used for calculating the short strike can then be given based on the 

last underlying value S0 and the minimal/maximal underlying value Smin and Smax in the last n trading days. Typical 

inputs instead of S0 for calculating the short strike could be of the form 

• s_min 

• s_max 

• or even “(s_min + s_max)/2” is possible 

We are not including this option in our upcoming tests, but it looks like an interesting variant for future research. 

 

Minimum-premium strategy 

Consider the idea that the calculation formula for the long strike K2 is already given as a function of K1. In this 

approach, we then choose for each period the pair (K1, K2) in such a way that K1 is the lowest value where the 

combination of put options with strikes K1 and K2 earns at least the specified percentage of the invested capital as 
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premium. This means that for a user stating a premium of at least 3% for each trade and K2 = 0.95 · K1, we would 

search for the lowest value of K1, such that the combination of the short and the long position earns at least the stated 

3% premium. 

 

No exit – capped risk strategy 

Exit strategies are a key concern in the definition of the put-write strategy. If thresholds are too strict, there will be 

more frequent losses, even if in hindsight, the strategy would have worked had no positions been closed. On the other 

hand, exit strategies reduce the risk of losing the entire investment. 

Not using any exit threshold worked out remarkably well while testing the strategy, until a total loss occurred at 

one point. Thus, we thought about ways to handle the risk without having to state any exit strategies. For this reason 

we allowed to check “no-exit” strategies on just a fraction of the available investment. This means that the strategy 

is never closed before expiration, yet we choose the number of traded contracts N such that the maximum loss is a 

fraction of x% of the available investment amount. 

This approach led to very positive results, especially where the short strike was chosen in a very aggressive way, 

e.g. exactly at the money or even slightly above. 

 

Two-month strategy with shifted legs 

One special strategy implemented in our software is the so called 2M Strategy (2-month strategy), where options with 

two months until expiration are traded. The available investment is, however, split into two halves, and one month 

after opening the first leg, we are using the second half of the capital to start another leg with expiration in two 

months. The idea is to be able to react to market developments when investing the next half of the capital. 

 

Upper and lower bound for short strike 

It is also possible to define upper and lower bounds for the short strike. If the short strike calculation would result in 

a value outside this interval, then the respective boundary is used instead. 

Re-testing successful strategies 

In the section “overview and discussion of the test results”, the previous paper (Larcher, Del Chicca, and Szölgyenyi, 

2013) included a listing of the most successful strategies in terms of return per annum as well as in terms of Sharpe 

ratio. Building on this knowledge we were strongly interested in finding out how these strategies fared in the period 

reviewed for the present paper, that is, from January 2010 to August 2020. The results should help to understand how 

stable such parameter choices are in terms of profitability. From the previous results we know that: 

• strategies based on 

– a short strike very close to the current S&P500’s value (e.g. 𝐾1 = 𝑆0, 𝐾1 = (1 − 0.1 ⋅ 𝑉𝐼𝑋) ⋅ 𝑆0) 

– an exit strategy, which stops the current trades somewhere between 5% to 20% loss, and 

– a long strike of 0.97 ⋅ 𝐾1 or 0.95 ⋅ 𝐾1 
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performed best in terms of return p.a. 

• strategies based on 

– either the “minimum premium” approach, or 

– current volatility and further out-the-money  

(e.g. 𝐾1 = (1 − 0.7 ⋅ 𝑉𝐼𝑋) ⋅ 𝑆0 or 𝐾_1 = (1 − 0.5 ⋅ ℎ𝑣)  ⋅ 𝑆_0) 

– a long strike of 0.91 ⋅ 𝐾1 or 0.93 ⋅ 𝐾1 and 

– an exit strategy somewhere between 5% and 30% loss 

performed best in terms of Sharpe ratio 

 

For all the following re-tests we fix the standard parameters as follows: 

– initial investment capital: 100,000 USD 

– start of period: January 2010 

– end of period: August 2020 

– standard 1-month strategy, i.e. from each month’s third Friday to the subsequent month’s third Friday  

– transaction costs: 5 USD per contract 

 

Re-testing “best strategies in terms of return p.a.” 

To re-test the best strategies in terms of return we ran the strategy on arbitrary combinations of the parameters in 

Table 3. Figure 10 shows a return-volatility diagram of these combinations. The average return p.a. of these strategies 

was 7.61%, the average Sharpe ratio was 0.1191. As can be seen, these choices of strategy parameters are rather 

volatile (as is to be expected), with high potential for both profits and losses. 
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Table 3. Parameter combinations for re-testing of best strategies in terms of return p.a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Return-volatility diagram showing the re-testing results of the best strategies in terms of return p.a. 

 

Some examples of parameter choices which were in the top 10 in the previous paper’s time span until 2010 and 

worked well in the currently considered time span are provided in Table 4. The results for these specific choices are 

obviously worse than in the early 2000s, which is not surprising since these were the top results of the previous 

backtests. 

 

 

 

 

 

Short strike K1 Long strike K2 Exit 

1.01*S0 0.97*K_1 5% 

S0 0.95*K_1 10% 

         0.99*S0  15% 

0.98*S0 

(1-0.1*vix)*S0 

(1-0.2*vix)*S0 

(1-0.1*hv)*S0 

(1-0.2*hv)*S0 

 20% 
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Table 4. Examples of parameter combination which worked well until 2010 and 2020 in terms of return p.a 

 

Re-testing “best strategies in terms of Sharpe ratio” 

In our re-tests of the best strategies in terms of Sharpe ratio we used the parameter combinations shown in Table 5. 

The results over all of these combinations are illustrated in a return-volatility diagram in Figure 11. The results 

showed much less volatile returns, which in turn also leads to a higher Sharpe ratio. The average return p.a. is 6.86% 

with an average Sharpe ratio of 0.3661. What is striking, however, is that especially the minimum-premium approach 

consistently yields much more stable results. To illustrate this we added Figure 12, where only the minimum-premium 

strategies are plotted. Note that the average return of 8.28% and the average Sharpe ratio of 0.434 are also better in 

these types of strategies. 

 

Table 5. Parameter combinations for re-testing of best strategies in terms of Sharpe ratio 

Short strike K1 Long strike K2 Exit Return (p.a.) Sharpe Prev. return (p.a.) 

0.98 · S0 0.95 · K1 20% 34.50% 0.5351 62.30% (2000-2009) 

(1 − 0.1 · VIX) · 

S0 

0.95 · K1 15% 17.05% 0.2742 59.95% (2000-2009) 

S0 0.95 · K1 5% 7.70% 0.1053 61.90% (2000-2009) 

Short-Strike Long-Strike Exit 

minimum premium 1-6% 0.91*K_1 5% 

(1-0.1*hv)*S0 0.93*K_1 10% 

(1-0.2*hv)*S0  15% 

20% 

(1-0.8*vix)*S0 0.97*K_1 20% 

(1-0.6*vix)*S0  25% 

(1-0.7*vix)*S0  30% 
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Figure 11. Return-volatility diagram showing the re-testing results of the best strategies in terms of Sharpe ratio 

 

 

Figure 12. Return-volatility diagram showing the re-testing results of the minimum-premium strategies 

 

When re-testing the best strategies in terms of return, we also looked at some specific parameter choices in terms 

of Sharpe ratio that worked well in both considered time spans before 2010 and afterwards. These are presented in 

Table 6. Again the results deteriorated in the later period but were still clearly positive. 
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Table 6. Examples of parameter combination which worked well until 2010 as well as between 2010 and 2020 in terms of Sharpe 

ratio 

Short strike Long strike K2 Exit Return (p.a.) Sharpe Prev. return (p.a.) 

MP 3% 0.91 · K1 5% 11.99% 0.7903 31.40% (1990-2009) 

MP 5% 0.91 · K1 5% 12.00% 0.5651 43.15% (1990-2009) 

MP 4% 0.91 · K1 5% 10.58% 0.5602 33.13% (2000-2009) 

 

Overview of results in the last decade 

In the following we are going to provide an overview of the results of our extensive testing of various combinations 

of parameter choices. For all of the following tests we used these fixed parameter settings: 

– initial investment capital: 100,000 USD 

– start of period: January 15, 2010 

– latest possible period start: July 27, 2020 

– transaction costs: 5 USD per contract 

Additionally we combine possible choices from among these variable parameters: 

• period length: 3 days, 7 days, 14 days, 30 days 

• short strikes 

– minimum premium: 1%, 2%, 3%, 4%, 5%, 6% 

– values x · S0 with x ∈ {0.88,0.9,0.92,0.94,0.96,0.98,1,1.02,1.04} 

– values (1 − x · VIX)S0 with x ∈ {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8} 

– values (1 − x · hv)S0 with x ∈ {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8} 

• long strikes with values x · K1 with x ∈ {0.9,0.92,0.94,0.96,0.98} 

• exit thresholds at 5%, 10%, 15%, 20%, 25%, 30%  

All results can be found on the website at: https://app.lsqf.org/option-strategies/short-strategy-results 

An overview of the best results in terms of the Sharpe ratio on the one hand, and in terms of return per annum on 

the other hand, is presented in Tables 7 and 8. 

 

Best strategies in terms of Sharpe ratio 

Our goal was to identify groups of parameter settings which work structurally well. It was not to find specific 

parameter settings that worked well in exceptional cases. 

– Strategies based on the minimum-premium approach combined with an early exit strategy (at 5% or 10% loss) 

and long strikes not too close at the money (between 0.9·K1 and 0.94·K1) worked especially well and were less 

volatile. Higher thresholds for the exit strategy and longer periods reduce the profit. 

https://app.lsqf.org/option-strategies/short-strategy-results
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– Another successful approach consists in choosing a risky short strike of 1.02 · S0 or S0 paired with an exit 

strategy and a long strike not too close to the money, i.e. between 0.9·K1 and 0.94·K1. What is noticeable here 

is that shorter periods can lead to losses. 

– When choosing shorter periods the results suggest a more conservative out-of-the-money strike choice of  

0.98 · S0, again combined with an exit strategy and long strikes as before. 

Table 7 lists the top 50 strategies in terms of Sharpe ratio. 

 

Best strategies in terms of return per annum 

When looking at the best strategies in terms of return per annum (see excerpt in Table 8) there are a few things that 

stand out: 

– Short strike choices are on the very risky side, especially where they are at the money, but in most cases even 

above that level. 

– Longer periods – i.e. 14 or 30 days – are more common in this table than in the “best strategies in terms of 

Sharpe ratio”. This is probably due to the riskier (higher) short strike choices and the need for the underlying 

asset to increase until expiration. 

– In general, and as is to be expected, the maximum drawdown is much higher than for the “best strategies in 

terms of Sharpe ratio”. 

What was astonishing for us is the poor performance of strategies based on 3-day periods. Not only are those 

strategies missing in the top lists (Tables 7 and 8), but their results were also mostly negative. However, we want to 

emphasize that checking an option’s values on a daily basis might be too rough a subdivision to work reliably for 

such short-term observations. 

Scenario testing 

Finally, we take a closer look at some specific periods between January 2010 and August 2020 in which the S&P500 

exhibited different characteristics. 

– S1 (2010-2017): The performance of the S&P500 in these 8 years is best described as steadily growing, without 

much volatility. Even though losses did not occur often, the options’ prices were rather low, which is not 

positive for the strategy per se. 

– S2 (2018): This year consisted of big and sudden losses in the S&P500’s value at the start and the end of the 

year, and a steady growth in between. In terms of the put-write strategy, many sudden losses, such as the ones 

that occurred in this period, are the worst possible scenario. 

– S3 (January 2020 - June 2020): Early 2020 was a really special year, with a huge loss for the S&P500 in March 

and a fast recovery by June, amid very high volatility in the markets. Option prices were enormously high in 

this period. 

Since these three periods are so fundamentally different, our interest now lies in finding strategies which worked 

well in each of these periods. We aim to find tendencies as to which strategies work well in a wide range of scenarios. 

The minimum-premium approaches seem to have very balanced outcomes throughout the different scenarios, while 
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the other variants mostly have one scenario that leads to clearly negative results. Examples of such strategies are 

shown in Table 9. 

 

Table 6. Strategies which worked relatively well in periods of different characteristics 

Short strike Long strike Exit Period S1 Return (p.a.) S2 return (p.a.) S3 return (p.a.) 

MP 3% 0.92*k 5.00% 7d 52.81% 29.92% 34.45% 

MP 5% 0.92*k 5.00% 7d 66.55% -0,76% 164.68% 

(1-0.3*v) *s 0.92*k 5.00% 30d 28.89% 11.89% -12.02% 

1.02*s 0.9k 5.00% 14d 114.56% -9.81% 4488.55% 

0.94*s 0.9*k 10.00% 30d 36.74% 12.09% -14.56% 

 

Especially interesting is the first strategy, not only since it is the best strategy overall in terms of Sharpe ratio, but 

also since it worked well in all of the three different periods. Because of this remarkable performance we provide 

some additional insights into this specific strategy and its performance in Figure 13. For better visibility we also 

added the performance of that strategy on a logarithmic scale in Figure 14. Between 2010 and August 2020 this 

strategy had 324 periods with positive results and 109 periods with negative results. For more in-depth details we 

refer to our analysis software on app.lsqf.org. 

The second notable result is the S3 return of the “1.02·s” strategy in Table 9. At first glance the 4488.55% return 

(p.a.) might seem like an error, however, the very high volatility in this specific time span led to this enormously high 

profit (486.80% from January to June). Calculating the per-annum return thus gives us 4488.55%. 

 

Figure 13. Profit of the 3% MP strategy with 0.92 · K1, exit at 5% and 7d period from 2010 to August 2020 (lin. scale) 
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Figure 14. Profit of the 3% MP strategy with 0.92 · K1, exit at 5% and 7d period from 2010 to August 2020 (log scale) 
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Table 7. Best strategies between January 2010 and August 2020 in terms of Sharpe ratio 
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Table 8. Best strategies between January 2010 and August 2020 in terms of return per anno 
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Real-data backtests for the Lambda strategies 

As was already pointed out earlier, variants as well as combinations of such Lambda strategies in real trades since 

summer 2012 have yielded exceptionally good results. In the following we are going to start a first comprehensive 

study of this type of strategies. 

Just like we did for the put-write strategy in the previous section, we are now going to describe the detailed settings 

and execution of the Lambda strategy, and of the backtesting program on our website. The basic control parameters 

to be set by the user are 

• the available investment capital I at the beginning of each period 

• the duration of each period 

• the period to be checked (start and end date) 

• the type of hedging with long options. Available variants are 

– “Put” – hedging against underlying price drops with a single long put option 

– “Call” – hedging against underlying price increases with a single long call option 

– “Both – left side” – hedging against strong fluctuations of the underlying in any direction, while the 

maximum-loss parameter described below applies only to underlying price drops 

– “Both – right side” – the same principle is applied, but the "max loss" only applies to underlying price 

increases 

– “None” – no long options will be used 

– “Dynamic” – the type of long options chosen is decided for each trading period individually according to 

a formula described below 

• the maximum loss as a percentage of the current investment capital, but applied only to the side specified in 

the type of hedging chosen 

• the intensity of the strategy, with a parameter to specify how many option combinations are to be traded, 

depending on the currently available capital at the beginning of each period, as described in the relevant section 

below. 

In addition to the basic parameters described above, users can provide additional parameters like bid-ask spreads 

or transaction costs to consider real-market frictions. 

Basic parameter settings and execution of the strategy 

The following steps are repeated in a loop starting at the given start date until the end date is reached. 

 

1. Determining the upcoming trading period 

The program tries to find suitable options so that the actual period length is greater than or equal to and in any case 

as close as possible to the chosen period length. If no options with that quote date (which satisfy the requirements of 

the chosen strategy parameters) can be found, so that the actual period length is smaller than the chosen length plus 

one week, the quote date is moved one day forward, and the process is repeated. 
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2. Choice of short option strikes 

As described in the introduction above, the short put and call options are always chosen with a strike as close as 

possible to the current underlying price. 

 

3. Choice of long option strikes 

If only one long option is chosen (or determined by the “dynamic” formula) as the hedging type, the strike is chosen 

as far as possible from the money, but so that the maximum loss in that direction matches the corresponding 

parameter. 

If one of the “Both” variants is chosen, the same principle is applied for the specified maximum-loss side, while 

already keeping in mind the price for an additional long option of the other respective type of the same price. This 

other long option is then chosen as close as possible to the money, but with a price less than or equal to its counterpart. 

We want to illustrate this using a real data example. We consider the 14-day period from February 14 until 

February 28, 2018. We went short on a contract (100 units) of put options with price PS = 33.45 USD and a contract 

of call options with price CS = 30.80 USD, both with a strike KS of 2700. The maximum loss is set at 3%. As we start 

with a capital of 100,000 USD in this example, the absolute maximum loss M accounts for 30 USD per unit, i.e.,  

3,000 USD per contract. (Note that choosing a negative maximal loss as a parameter value is also possible. For 

example, a maximal loss of -2% means a minimal profit of 2%.) Let us now take a look at the choice of long options 

for the respective settings in the “long type” section:  

• “put” setting: The single long put with ask price PL and strike KL is chosen according to the formula 

KL −KS +PS +CS −PL ≥ M, which is equivalent to PL ≤ KL −KS +PS +CS −M. So we look for the put option with the 

lowest possible strike that meets this condition, and get one with PL = 12.7 USD and KL = 2620, of which we 

buy one contract. 

• “call” setting: We search for a long call with ask price CL and the highest possible strike KL in the same manner, 

but with the adapted condition CL ≤ −KL + KS + CS + PS − M, and get an option with CL = 4.2 USD and KL = 2790. 

• With the “both – left side” setting, a put option is chosen in basically the same way as for the “put” setting, 

except that the formula already accounts for a call option of the same price. Therefore, the condition PL ≤ KL−KS 

+CS +PS −M −PL returns a put option with PL = 16 USD and KL = 2640. Then, in order to also hedge the right 

side of the profit function, we look for a call option with the lowest possible strike so that CL ≤ PL, which in our 

case turns out to be a call option with price CL = 15.4 USD and strike KL = 2735. We buy one contract of each. 

• The same principle is applied for the setting “both – right side”. The call option with the highest possible strike 

needs to meet the condition CL ≤ −KL + KS + CS + PS − M − CL while PL ≤ CL needs to hold for the put. We get a call 

option with CL = 5.3 USD and strike 2780 and a put option with PL = 5.2 USD and strike 2540. 
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Dynamic mode 

If the setting “dynamic” is chosen in the hedging type section, the choice of long option types is determined 

dynamically at the beginning of each period, based on the maximum (max) and minimum (min) underlying closing 

price on the last 5 trading days and the current underlying price s, according to the following principle: 

• If max > 1.02 · s and min > 0.995 · s, the “call” setting is chosen for this period 

• If max < 1.005 · s and min < 0.98 · s, the “put” setting is chosen for this period 

• Otherwise, the setting “none” is chosen for this period 

To illustrate this, we look at the three consecutive trade periods starting on 14 February 2018. At the beginning of 

each period, we examine the underlying closing values of the last trading days. 

 

 

Figure 15. Last trading days before February 14  

 

We see that the maximum underlying value in this interval amounts to 2698.63 and equals the current underlying 

price at the beginning of the period, while the minimum value is 2581. Therefore, since 2698.63 < 1.005 · 2698.63 

and 2581 < 0.98 · 2698.63, according to the above formula, we choose the “Put” setting for the period between 

February 14 and February 28. 

 

Figure 16. Last trading days before February 28  
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On February 28, as the graphic shows, the current underlying value held at 2713.83 while in the last trading days 

before that, the maximum was 2779.60 and the minimum was 2703.96. As 2779.60 > 1.02·2713.83 and 2703.96 > 

0.995 · 2713.83, we choose the “Call” setting for the period between February 28 and March 14. 

 

Figure 17. Last trading days before March 14 

 

As we can easily observe, none of the two conditions (for buying any long position) holds for the last trading days 

before the next period, where the maximum underlying value amounted to 2786.57, the minimum to 2738.97 and the 

current value on March 14 was 2749.48. We consequently choose the setting “none” and hence don’t acquire any 

long options for the period between March 14 and March 28. 

The consideration on which this strategy is based is essentially a “short-term mean reversion assumption”. The 

user of this approach believes in mean reversion after a sudden strong decline or increase of the index, and hence 

wants to hedge against such a mean reversion. 

 

4. Determining the number of combinations to trade 

At the beginning of each period, the program determines the number of option combinations n to trade, depending 

on the currently available capital I and the intensity parameter i. A combination is a set of two short option contracts 

and 0 to 2 long option contracts, as defined in the strategy settings. The number of combinations is determined 

according to the formula 

𝑛 = ⌈
𝐼 ⋅ 𝑖

100000
⌉ 

5. Exiting the strategy 

The program will regularly terminate its strategy execution if the start date of the next period is later than the 

designated strategy’s end date minus the specified period length. 

In addition, it will exit the strategy if the capital available at the beginning of a period is less than 50,000 USD. 
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Additional Parameters 

As in the program for the put-write strategy, users can also provide additional parameters to take existing market 

restrictions into account. 

 

Transaction costs 

The transaction costs per contract can be provided and are subtracted accordingly. 

 

Bid-ask spread 

The market buying price (mbp) of an option is determined based on its bid and ask prices as well as the specified 

value of the bid-ask spread parameter as follows: 

• For buying options we use the price: 

𝑚𝑏𝑝 =
𝑏𝑖𝑑 + 𝑎𝑠𝑘

2
+ 𝑠𝑝𝑟𝑒𝑎𝑑 

• For selling options we use the price: 

𝑚𝑏𝑝 =
𝑏𝑖𝑑 + 𝑎𝑠𝑘

2
− 𝑠𝑝𝑟𝑒𝑎𝑑 

Overview of results for Lambda strategies in the period from 2012 to 2020 

In this section, we will present a general overview of representative results of the execution of the Lambda strategy 

backtests between summer 2012 and summer 2020. 

The following settings applied to all of the strategy executions which we have carried out: 

• Initial investment capital: 100,000 USD 

• Start date: July 1, 2012 

• End date: July 31, 2020 

• Transaction costs per contract: 5 USD 

• Bid-ask spread: 0.1 

• Intensity: 1 

We have carried out backtesting for a wide range of combinations of fixed parameter choices. Detailed results of 

the backtests, and all the details of each strategy’s performance in the time period from 2012 until 2020 can be found 

on our website. In addition, any choice of parameters can be tested using the testing program on our website. 

Compared with the results that the second author and his trading team obtained with these strategies in real-life 

trading during this time period and compared also with the results of the put-write strategies, the backtesting results 

for the Lambda strategies are rather poor. In Table 10 we show the 10 best strategies in our tests with respect to 

annual return. In Table 11 we show the 10 best strategies in our tests with respect to Sharpe ratio. 
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Table 10. Best strategies between July 2012 and August 2020 in terms of return per annum 

Period (days) Long type Max loss Return p.a. Max drawdown Volatility p.a. Sharpe 

7 call -1.50% 22.54% -54.14% 44.19% 0.4875 

7 call -2.00% 18.17% -59.09% 48.81% 0.3517 

3 call -2.00% 16.93% -55.17% 60.92% 0.2614 

30 call -1.50% 10.99% -61.84% 30.56% 0.3270 

30 call -0.50% 9.90% -54.81% 27.73% 0.3210 

30 call -1.00% 9.85% -62.35% 29.95% 0.2955 

7 both-right -0.50% 8.53% -7.97% 35.81% 0.2103 

30 call 0.00% 7.96% -59.78% 31.18% 0.2232 

14 call -0.50% 7.46% -69.17% 28.36% 0.2278 

14 both-right -0.50% 6.94% -7.89% 17.26% 0.3444 

 

Table 11. Best strategies between July 2012 and August 2020 in terms of Sharpe ratio 

period (days) long type max loss return p.a. max drawdown volatility p.a. Sharpe 

7 call -1.50% 22.54% -54.14% 44.19% 0.4875 

30 both-right 0.00% 5.57% -14.37% 9.90% 0.4619 

7 call -2.00% 18.17% -59.09% 48.81% 0.3517 

14 both-right -0.50% 6.94% -7.89% 17.26% 0.3444 

30 call -1.50% 10.99% -61.84% 30.56% 0.3270 

30 call -0.50% 9.90% -54.81% 27.73% 0.3210 

30 call -1.00% 9.85% -62.35% 29.95% 0.2955 

7 both-right 0.00% 4.68% -38.21% 12.74% 0.2888 

3 call -2.00% 16.93% -55.71% 60.92% 0.2614 

14 call -0.50% 7.46% -69.17% 28.36% 0.2278 

 

Only a few of the tested strategies show an outperformance over the S&P500 in the same time period. The S&P500 

had an annual return of 11.41%, a Sharpe ratio of 0.614 and a maximum drawdown of -33.92% (from February 19, 

2020 to March 23, 2020) in this time period. 

How can we explain this obvious discrepancy between the performance of real-trade Lambda strategies (especially 

when carried out with short-term options (3d until 7d)) and the backtests? 
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Our most likely explanation for this is based on the flexibility of the parameter choices based on the current market 

scenario when executing the Lambda strategies in real trading. We did not use an a priori defined choice of parameters 

but tried to “optimally” adapt the choice of parameters for each new period to the given circumstances of the S&P500 

market. 

However, it is hard to efficiently optimize dynamic choices of optimal parameters based on given market 

scenarios. Further research based on these observations is called for. A first (and of course too simple and insufficient) 

attempt toward an automated adapted choice of parameters was made with the above described “dynamic mode”. 

Going forward, AI and machine-learning techniques should prove helpful in this regard and should be investigated 

with a view to optimizing such adapted parameter choices. Maybe modeling of different market scenarios and 

executing these strategies on the models also provides insight into different approaches given a specific market 

environment. 

In conclusion we want to highlight two of the more successful parameter choices. 

• The strategy “7 days, call, -1.5% maximum loss” is the Lambda strategy with the highest annual return in the 

period from 2012 to July 2020. 

• The strategy “7 days, both-right, -0.5% maximum loss” is a strategy with a stable, clearly positive return, and 

with a positive return in all the relevant – including the critical – sub-periods, i.e., in the period from 2012 to 

2017, in 2018, from 2012 to 2019, and in the period from January to July 2020. Moreover, it shows only a 

moderate maximum drawdown. 

In Table 12 we see the most relevant performance data for these two strategies, and in Figure 14 we illustrate the 

performance of these two strategies in comparison with the performance of the S&P500 index in the period from 

2012 to July 2020. Again, all the details of every single trade of these (and all the other strategies) can be found on 

our website. 

 

Table 12. Most relevant performance data for two strategies 

strategy 7 days, call -1.5%. max loss 7 days, both right, -0.5% max loss 

return p.a.    22.54%    8.53% 

return    408.49%    92.48% 

return until end 2017    223.73%    12.62% 

return 2018    -27.54%    28.71% 

return until end 2019    321.63%    52.56% 

return 2020    20.60%    26.17% 

max drawdown    -54.14%    -7.97% 

volatility p.a.    44.19%    25.81% 

Sharpe    0.4875    0.2103 
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Figure 18. Performance of two strategies in comparison with the S&P500 

Summary 

Our analysis of S&P500 put-write strategies for the period from 2010 to 2020 show that these strategies yield a clear 

outperformance for a wide choice of parameter values, and they confirm results of investigations into the performance 

of such strategies that were given for the period from 1990 to 2010 in (Larcher, Del Chicca, and Szölgyenyi, 2013). 

We show – based on simulation experiments – that to a certain extent, this outperformance can be explained by a 

negative correlation between the S&P500 index and its volatility index VIX. 

In contrast to this, the backtests of the so-called Lambda strategies generally do not show a satisfying performance 

for the time period from 2012 until 2020, despite the fact that real-life trading in this time period provided very 

positive and stable results. One main reason for this seeming discrepancy between theoretical and real trading results 

most probably lies in the adaptability of the strategy’s parameters to different market conditions in the real trades, 

whereas in the backtests we worked with strictly pre-defined parameter choices only. This calls for further 

investigation with more flexible parameter choices dependent on given market scenarios. 

We provide free backtesting software and detailed data on all of our simulation and backtesting results on our 

website at www.lsqf.org. 
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