
Bilandi, Majid Mazloum and Kudła, Janusz. “Comparing the Precision of Different Methods of Estimating VAR with a 

Focus on EVT.”  ACRN Oxford Journal of Finance and Risk Perspectives 5.1 (2016): 109-147. 

 

109 

COMPARING THE PRECISION OF DIFFERENT METHODS 

OF ESTIMATING VAR WITH A FOCUS ON EVT 

MAJID MAZLOUM BILANDI 
1, JANUSZ KUDŁA 

2 
1Ph.D. Candidate in Economics, University of Warsaw, Faculty of Economic Sciences 
2Prof. dr hab. University of Warsaw, Faculty of Economic Sciences 

Abstract: The paper aims to conduct a comprehensive research in sphere of risk 

measurement. This study would like to determine the forecasting precision of different 

risk estimation tools through implication of popular methods e.g. parametric and 

non-parametric methods in this field and more fresh and complicated methods e.g. 

semi-parametric methods and finally confirming the results with exploiting 

backtesting methods. Design/methodology/approach – The paper opted for a 

quantitative approach of measuring VaR. Estimating VaR by implying 8 different 

methods then comparing the obtained results based on backtesting criterion. We put 

into examination 6 major international stock exchange indices e.g. Canadian TSX, 

French CAC40, German DAX, Japanese Nikkei, UK FTSE100 and US S&P500 from 

03-June-2003 to 31-March-2014 meanwhile we used rolling-window technic for 

backtesting purpose. The data were obtained from Yahoo! Finance. Findings – The 

paper empirically determined extend to which, the aforementioned methods are 

reliable in estimating one-day ahead VaR. we find out that EVT and HS are the two 

most precise methods albeit at very high confidence levels the EVT produces the most 

accurate forecasts of extreme losses. Results of this study encouraged financial 

managers to turn from using traditional methods of risk measurement to more fresh 

and reliable one such as EVT method of estimating VaR. Originality/value – This 

paper fulfills need to a comprehensive study of different proposed methods of 

measuring risk and showed the estimated VaR of them in a readily comparative 

manner.  

Keywords: VaR, HS, GARCH (1, 1), EGARCH, GJR-GARCH, AGARCH, DCC-

MGARCH, FHS, EVT, Simulation Technique. 

Introduction 

Notion of risk refers to a probability of happening some undesirable event, which is closely 

related to uncertainty. For financial risks, appropriate definition might be “any event or action 

that may adversely affect on organization’s ability to achieve its objectives and execute its 

strategies”. Indeed, two essential tasks of financial managers* are to a) forecast these adverse 

events and b) evaluate the market risk exposure by estimating losses -in advance – that is expected 

to occur in time of when the price of assets fall down. This is the purpose of the Value-at-Risk 

(VaR) methodology. VaR is a special type of “downside risk measure”. The concept of VaR is 

                                                 

* Management of risk is briefly made up of the subsequent basic activities: a) understanding the risks being taken by 

an institution, b) measuring the risks, c) controlling the risk, d) communicating the risk.” 
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easy albeit, its calculation is not. The methodologies initially developed to calculate VaR are: (a) 

Parametric method, (b) Non-parametric methods† and (c) Semi-parametric method. VaR not only 

produce a single statistic or express absolute certainty but also it makes a probabilistic estimate, 

and consequently refers to concept of randomness. Initially VaR ask, with taking into account a 

specific confidence level, what is our maximum expected loss over a specific time span?  

Since VaR is the acknowledged method by the Basel Committee on Bank Supervision 

(BCBS)‡, in result a growing body of literature has either proposed a new model for measuring 

VaR or compares the precision of VaR estimation by the competitive models. This paper 

contributes to comparison of several VaR using a comprehensive range of parametric, non-

parametric and semi-parametric methods.  

The assumption in modeling VaR e.g. normal distribution of return data series is not a 

realistic assumption in financial markets where the data series have thick tails, which are known 

by extreme events left outside the bounds of a normal distribution in modeling VaR. Neftci (2000) 

argues that it is likely that extreme events are “structurally” different from the return-generating 

process under market conditions. An obvious response to this problem is to employ a 

methodology that explicitly allows for the fat-tailed nature of return distributions, such as those 

based on Extreme Value Theory (EVT), which will be empirically examined in this paper. 

Literature concerning the measure of volatility and the frequency of data to be used in 

parametric and non-parametric VaR is broad. Taylor and Xu (Taylor and Xu, 1997) and Anderson 

and Bollerslav (Andersen and Bolerslav, 1998) introduce the idea of realized volatility. ARCH 

family, which are considering as Parametric methods, was introduced by Engle (Engle, 1982) and 

GARCH introduced by Bollerslev (Bollerslev, 1986). First and most popular models allowing for 

asymmetrical impact of new information were: EGARCH (Nelson, 1991), TARCH (Zakoian, 

1994) and GJR-GARCH (Glosten et al, 1993). Other model, most general from all presented in 

this dissertation is APARCH (Ding, Granger and Engle, 1993). Dave and Stahl (Dave and Stahl, 

1997) showed the effects of ignoring volatility clustering and non-normality of daily returns 

distribution on VaR modeling. They provide a good review of VaR estimation techniques and 

their paper is already a classical source of reference. The idea of using intraday data when 

estimating volatility comes up in work of Merton (Merton, 1980). Boudoukht et al. (Boudoukht 

et al. 1997) applied a class of volatility models on comparison of interest rate volatility forecasts 

and concluded that” density estimation and Risk Metrics™ forecasts to be the most accurate for 

forecasting short-term interest rate volatility”. 

Giovanni Barone-Adesi and Kostas Giannopoulos refinement the Historical Simulation (HS) 

methods and proposed the Filtered HS (FHS) in which based on results FHS outperform the HS 

in estimating Value-at-risk. Jacob Boudoukht et al. introduced HS (1998), which “avoids the 

parameterization problem entirely by letting the data dictate precisely the shape of the 

distribution”. 

Risk managers and Portfolio managers concern extreme negative side movements in the 

financial markets. A long list of research has posted on this topic that is Semi-parametric 

technique. Ramazan et. al. (2006) examine the dynamics of extreme values of overnight 

borrowing rates in an inter-bank money market. Generalized Pareto distribution has been picked 

for it’s well fitting. Fernandez (2005) used extreme value theory to the United States, Europe, 

Asia, and Latin America financial markets for computing value at risk. One of his findings is on 

                                                 

† (a) and (b) are also known as “conventional methods”.  

‡  BCBS involving the chairman of the central banks of Belgium, Italy, France, Swiss, Sweden, Spain, Holland, Canada, 

Luxemburg, Japan, the United States and the United Kingdom. This committee provides recommendations on banking regulations 

with regard to market, credit and operational risks. Its purpose is to ensure that financial institutions hold enough capital on 

account to meet obligations and absorb unexpected losses.  
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average, EVT provides the most accurate estimate of VaR. Byström (2005) applied extreme value 

theory to the case of extremely large electricity price changes and declared a good fit with 

generalized Pareto distribution (GPD). Bali (2003) determines the type of asymptotic distribution 

for the extreme changes in U.S. Treasury yields. Neftci (2000) found that the extreme distribution 

theory fit well for the extreme events in financial markets. Gencay and Selcuk (2004) investigate 

the extreme value theory to generate VaR estimates and study the tail forecasts of daily returns 

for stress testing. Marohn (2005) studies the tail index in the case of generalized order statistics, 

and declares the asymptotic properties of the Fréchet distribution. Brooks, Clare, Dalle Molle and 

Persand, G., (2005) apply a number of different extreme value models for computing the value 

at risk of three LIFFE futures contracts. In this paper we will empirically estimate VaR based on 

EVT as well. 

In the present paper, we perform an evaluation of the predictive performance of the 

conventional VaR methods e.g. non-parametric and parametric models as well as semi-parametric 

methods, which are initially mixture of the two previous methods.  The models are “backtested” 

for their out-of-sample predictive ability by using Christoffersen’s (1998) likelihood ratio tests 

for coverage probability. We put into examination 6 major international stock exchange indices 

e.g. Canadian TSX, French CAC40, German DAX, Japanese Nikkei, UK FTSE100 and US 

S&P500 from 03-June-2003 to 31-March-2014.we used rolling-window technic for back-testing 

purposes. The data were obtained from is Yahoo! Finance. The return series have been converted 

into logarithmic returns. Having homogeneous data of only mature capital markets, which due to 

their close relationship expect to have similar characteristics, was the main reason behind 

choosing the considered data series.  

The study is organized as follows. In section 2, we review a full range of methodologies 

developed to estimate VaR. In section 2.1, a non-parametric approach is presented. Parametric 

approaches are offered in Section 2.2, and semi-parametric approaches in Section 2.3. In section 

3, the obtained empirical results of comparing VaR methodologies are shown.  

Theoretical characteristics of VaR models  

Jorion (2001) said that under normal market condition and at a given level of confidence VaR is 

the worst expected loss over a certain horizon. For example, a financial institution might say that 

the daily value-at-risk of its trading stock position is $1 million at the 95% confidence level. It 

means, under normal market conditions, only 5% of the time, the daily loss will beat $1 million. 

In fact the value-at-risk just point out the most we can expect to lose if no negative event occurs. 

 

Therefore value-at-risk is a conditional quantile of the asset return loss distribution. Based on 

Jorion (1990, 1997) “among the main advantages of VaR are simplicity, wide applicability and 

universality”. Let 𝑟1, 𝑟2, 𝑟3, …, 𝑟𝑛 be 𝑖. 𝑖. 𝑑. random variables representing the financial returns. 

Use 𝐹(𝑟) =  𝑃𝑟(𝑟 < 𝑟|𝛷𝑡−1) conditionally on the information set 𝛷𝑡−1 that is available at time 

𝑡 − 1. Assume that {𝑟𝑡} follows the stochastic process: 

𝑟𝑡 =  µ +  𝜀𝑡 ; 𝜀𝑡 =  𝑧𝑡𝜎𝑡    𝑧𝑡~ 𝑖𝑖𝑑 (0, 1)                                                                     (1) 

 

where 𝜎𝑡
2 = 𝐸(𝑧𝑡

2|𝛷𝑡−1)  and 𝑧𝑡  has the conditional distribution function 𝐺(𝑧), 𝐺(𝑧) =
Pr(𝑧𝑡 < 𝑧|𝛷𝑡−1). The value-at-Risk with a given probability 𝑞 ∈ (0,1), denoted by VaR (𝑞), is 
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described as the 𝑞  quantile of the probability distribution of financial returns:𝐹(𝑉𝑎𝑅(𝑞)) =

Pr(𝑟𝑡 < 𝑉𝑎𝑅(𝑞)) = 𝑞 or 𝑉𝑎𝑅(𝑞) = inf{ʋ|𝑃(𝑟𝑡 ≤ ʋ) = 𝑞}.   
This quantile can be valued in two ways: (a) inverting the distribution function of financial 

returns, 𝐹(𝑟) , and (b) inverting the distribution function of white-noise§, with regard to 𝐶(𝑧) the 

latter, it is also necessary to estimate 𝜎𝑡
2. 

 

𝑉𝑎𝑅 (𝑞) =  𝐹−1(𝑞) =  𝜇 +  𝜎𝑡𝐶−1(𝑞)                                                                          (2) 

Hence, a value-at-risk model entails the specifications of function of innovations 𝐶(𝑧) or function 

of financial returns 𝐹(𝑟), we can carry out the calculation of these functions using the following 

methods: (1) Non-parametric methods; (2) Parametric methods and (3) Semi-parametric methods. 

Below we shall describe the methodologies, which have been developed in each of these three 

cases to estimate VaR**.  

Non-parametric Method 

The major intend of Non-parametric approaches is to quantify an asset VaR without making 

strong assumptions about returns distribution. The core concept of these approaches is to “let data 

speak for themselves as much as possible” and not use to some assumed theoretical distribution 

rather recent returns empirical distribution- to estimate VaR. To be able to use the data from the 

recent past to forecast the risk in the near future all Non-parametric approaches are based on the 

underlying assumption that the near future will be satisfactorily similar to the recent past for us. 

The Non-parametric approaches include (a) Historical Simulation (HS) and (b) Non-

parametric density estimation methods. Since in this paper we empirically study VaR only based 

on Historical Simulation (HS), therefore, we will define properties of HS approach††.  

Historical simulation 

In 1998 Historical Simulation (HS) was introduced in a series if paper by Boudoukh and Barone-

Adesi as a method for estimating value-at-risk .HS is the most broadly applied Non-parametric 

and unconditional method. Research of Perignon and Smith (2010) recommend, “of the 64.9% of 

firms that disclosed their methodology, 73% (or three-quarter) reported the use of Historical 

Simulation rather than the parametric linear or MC value-at-risk methodologies”. This model uses 

the empirical distribution of financial returns as an approximation for 𝐹 (𝑟); hence VaR (𝑞) is 

the 𝑞 quantile of empirical distribution. Different sizes of samples can be taken into consideration 

to estimate the empirical distribution of financial returns. The keystone assumption is that the 

distribution of P&L is constant over the sample span and is a good predictor of future movements. 

In addition, this method is very sensitive to length of data sample as data may not be a good 

representative of current condition of market. 

When value-at-risk is said as a percentage of the asset’s value, the 100𝑞% 𝑛 − 𝑑𝑎𝑦 

historical value-at-risk is the 𝑞 quantile of an empirical 𝑛 − 𝑑𝑎𝑦 discounted return distribution. 

The percentage value-at-risk can be transformed to value-at-risk in value terms: we just multiply 

it by the current portfolio value. 

                                                 

§ Also known as “innovations”. Here we will use them interchangeably.  

** For a more pedagogic review of some of these methodologies (see Feria Dominguez, 2005). 

†† For further studying about Non-parametric density estimation methods refer to Bulter and Schachter (1998) or Rudemo (1982). 
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Parametric methods (part of volatility models‡‡) 

Parametric approaches calculate risk by firstly fitting probability curves to the data and next 

deducing the value-at-risk from the fitted curve. Among Parametric approaches, the first model 

to estimate VaR was RiskMetrics™ from JPMorgan (1996). This model assumes that the return 

portfolio add/or the residuals of return follow a normal distribution. Under this assumption, the 

value-at-risk of a portfolio at a 1 − 𝑞%  confidence level is calculated as VaR (𝑞) = 𝜇 +
𝜎𝑡𝐶−1(𝑞) , where 𝐶−1(𝑞)  is the 𝑞  quantile of the standard normal distribution and 𝜎𝑡  is the 

conditional standard deviation of the return portfolio. To estimate 𝜎𝑡, Morgan uses an Exponential 

Weight Moving Average Model (EWMA). The definition of this model is as follows: 
 

𝜎𝑡
2(1 − 𝜆) ∑ 𝜆𝑖(𝜀𝑡−𝑖)2𝑁−1

𝑗=0                                                                                                                        (3) 

where 𝜆 = 0.94 and the window size (N) is 74 days for daily data. Literatures have assigned a few 

drawbacks to the RiskMetrics that could be briefly listed as following:  

 

 Normal distribution assumption for financial return and/or white-noises (see Bollerslev 1987). 

 The model used EWMA to estimate the conditional volatility of the financial returns which it does 

not take into account symmetry and leverage effect (see Black 1976, Pagan and Schwert 1990) 

 iid return assumption. 

Given these disadvantages research on the Parametric methods has been made in several 

directions.  

GARCH (1, 1) 

In relate to the GARCH family, Engle (1982) proposed the “Autoregressive Conditional 

Heterocedasticity (ARCH), which features a variance that does not remain fixed but rather varies 

throughout a period”.  Bollerslev (1986) further expended the model by including in the ARCH 

generalized model (GARCH). This approach identifies and calculates two equations: the first 

formulates the evolving volatility of returns, whilst the second sketch the evolution of returns in 

accord with earlier returns. The most generalized formulation for the GARCH models is the 

GARCH (p,q) model which is exemplified by the following statement: 

 

𝑟𝑡 = 𝜇𝑡 + 𝜀𝑡                                                                                                                                (4) 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−1

2𝑞
𝑖=1 + ∑ 𝛽𝑖𝜎𝑡−𝑗

2𝑝
𝑗=1                                                                                         (5) 

Because initially GARCH model do not take into consideration the asymmetric performance of 

returns before positive or negative shocks (known as leverage effect) GARCH technique do not 

fully reflect the nature forced by the well-known properties of the financial time series, volatility. 

Meanwhile, they accurately characterize the volatility-clustering feature.  

 

                                                 

‡‡ the volatility models can be divided into three groups: (a) the GARCH fsmily (b) realized volatility-based models 

and (c) the stochastic models. 
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DCC-MGARCH model 

Multivariate GARCH models, specified in Engle (2002), allow the conditional covariance matrix 

of the dependent variables to follow a flexible dynamic structure and allow the conditional mean 

to follow a vector autoregressive (VAR) structure. The general MGARCH model can be written 

as: 

 

𝑦𝑡 = 𝐶𝑥𝑡 + 𝜀𝑡                𝑎𝑛𝑑               𝜀𝑡 = 𝐻𝑡
1 2⁄

𝜈𝑡                                                                      (6) 

where 𝑦𝑡 us a m-vector of dependent variables, 𝑚 is a 𝑚 ×  𝑘 parameter matrix, 𝑥𝑡 is a k-vector 

of explanatory variables, possibly including lags of 𝑦𝑡, 𝐻𝑡
1 2⁄

 is a Cholesky factor of the time-

varying conditional covariance matrix 𝐻𝑡, and 𝜈𝑡 is a m-vector of zero-mean, unit-variance 𝑖. 𝑖. 𝑑. 

Innovations§§. 
- EGARCH (1,1) 

The Exponential GARCH (EGARCH) model assumes a specific parametric form for this 

conditional heteroskedasticity. More specifically, we say that 𝜀𝑡 ∼ EGARCH if we can write 𝜀𝑡 =
𝜎𝑡𝑥𝑡, where 𝑥𝑡 is standard Gausian and: 

 

ln(𝜎𝑡
2) = 𝜔 + 𝛼(|𝑥𝑡−1| − 𝔼[|𝑥𝑡−1|]) + 𝜆𝑥𝑡−1 + 𝛽 ln(𝜎𝑡−1

2 )                                                     (7) 

Besides leptokurtic returns, the EGARCH model, as the 𝐺𝐴𝑅𝐶𝐻 model, captures other stylized 

facts in financial time series, like volatility clustering. The volatility is more likely to be high at 

time 𝑡 if it was also high at time 𝑡 − 1. Another way of seeing this is noting that shock at time 

𝑡 − 1 also impacts the variance at time 𝑡. 
                                          

GJR-GARCH (1, 1) 

The Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model assumes a specific parametric 

form for conditional heteroskedasticity. More specifically, we say that 𝜀𝑡~GJR − GARCH if we 

can write 𝜀𝑡 = 𝜎𝑡𝑥𝑡, where 𝑥𝑡 is standard Gaussian and: 

 

𝜎𝑡
2 = 𝜔 + (𝛼 + 𝜆𝐼𝑡−1)𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2                                                                                          (8) 

where 𝐼𝑡−1 = {1 𝑖𝑓 𝑟𝑡−1<𝜇
0 𝑖𝑓 𝑟𝑡−1≥ 𝜇

                                                                                                           (9)          

besides leptokurtic returns, the GJR-GARCH model, like the GARCH  model, captures other 

stylized facts in financial time series, like volatility clustering.  

                                                 

§§  A general MGARCH (1,1)  model may be written as: 𝑣𝑒𝑐ℎ(𝐻𝑡) = 𝑠 + 𝐴 𝑣𝑒𝑐ℎ(𝜀𝑡−1𝜀𝑡−1
′ ) + 𝐵 𝑣𝑒𝑐ℎ(𝐻𝑡−1)                                                                       

where the 𝑣𝑒𝑐ℎ (. ) function returns a vector containing the unique elements of its matrix argument. The various 

parameterizations of MGARCH provide alternative restrictions on 𝐻, the conditional covariance matrix, which must 

be positive definite for all 𝑡. Stata’s 𝑚𝑔𝑎𝑟𝑐ℎ command estimates multivariate GARCH models, allowing both the 

conditional mean and conditional covariance matrix to be dynamic. 
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AGARCH (1,1) 

AGARCH model besides leptokurtic returns captures other stylized facts in financial time series 

like volatility clustering. 

Consider a return time series (1), where 𝜇 is the expected return and 𝜀𝑡 is a zero-mean white 

noise. Despite being serially uncorrelated, the series 𝜀𝑡 does not need to be serially independent. 

For instance, it can present conditional heteroskedasticity. The Asymmetric GARCH (AGARCH) 

model assumes a specific parametric form for this conditional heteroskedasticity. More 

specifically, we say that 𝜀𝑡~ AGARCH if we can write 𝜀𝑡 = 𝜎𝑡𝑧𝑡, where 𝑧𝑡 is a standard Gaussian 

and:  

 

𝜎𝑡
2 = 𝜔 + 𝛼(𝜀𝑡−1 − 𝜆)2 + 𝛽𝜎𝑡−1

2                                                                                              (10) 

there is a stylized fact that the AGARCH model captures effects that is not contemplated by the 

GARCH model, which is the empirically observed fact that negative shocks at time 𝑡 − 1 have a 

stronger impact on the variance at time 𝑡 than positive shocks. This asymmetry is called the 

leverage effect because the increase in risk was believed to come from the increased leverage 

induced by a negative shock.  

Semi-parametric methods 

The Semi-parametric methods concatenate the Non-parametric approach with the Parametric 

approach. The most important methods are Volatility-weighted Historical Simulation, Filtered 

Historical Simulation (FHS), CaViaR method and the method based on Extreme Value Theory. 

In this paper we will probes properties of the first and the late method. Some application of 

Volatility-weighted Historical Simulation as well as CaViaR methods in VaR literature can be 

found in the following research papers: Hull and White (1998) and Engle and Manganelli (2004) 

respectively. Hull et al. indicates that this approach produces a VaR estimate superior to that if 

the Historical Simulation approach albeit, Engle et al. initially fails to provide accurate VaR 

estimate.  

- Filtered Historical Simulation (FTS) with bootstrapping 

Barone-Adesi (1999) introduced Filtered Historical Simulation (FHS) for fist time. This model 

combines the benefits of HS with the power and flexibility of conditional volatility models. FHS 

technique is an alternative to traditional HS technique and Monte Carlo (MC) simulation 

approach. Filtered Historical Simulation incorporates a nonparametric characteristic of the 

probability distribution of assets returns with a relatively complex model-based treatment of 

volatility (e.g. EGARCH). One of the interesting structures of Filtered Historical Simulation is 

its capability to produce reasonably large deviations (losses and gains) not found in the original 

asset return series. This method assumes that the distribution of returns of assets under 

examination is initially 𝑖. 𝑖. 𝑑. To make the data 𝑖. 𝑖. 𝑑. we must fit the first order autoregressive 

(AR1) model to the conditional mean of the asset returns, which can be formulized as: 

 

𝑟𝑡 = 𝑐 + ∅𝑟𝑡−1 + 𝜀𝑡                                                                                                                (11) 

and an asymmetric EGARCH model to the conditional variance 

 

log[𝜎𝑡
2] = 𝜔 + 𝑞𝑙𝑜𝑔[𝜎𝑡−1

2 ] + Φ(|𝑧𝑡−1| − 𝔼[|𝑧𝑡−1|]) + Ψ𝑧𝑡−1                                               (12) 
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the AR(1) model compensates for autocorrelation, whilst the Exponential  GARCH model also 

combines asymmetry (leverage) into the variance equation (Nelson, 2005). 

To compensate for the fat tails often related to index returns the standardized residuals of 

each index are modeled as a standardized Student’s t distribution. That is 

 

𝑧𝑡 =
ℰ𝑡

𝜎𝑡
  𝑖. 𝑖. 𝑑  distributiont(𝜐)                                                                                               (13) 

Imagine we use FHS to estimate the value-at-risk of a financial asset over a 1-day horizon. The 

first step in applying this technique is to fit a conditional volatility model to the asset return data.  

Barone-Adesi et al. (1999) suggested an asymmetric GARCH model. The realized returns are 

then standardized by splitting each one by the corresponding volatility, 𝑧𝑡 = (
𝜀𝑡

𝜎𝑡
⁄ ). These 

standardized returns should be suitable for HS. The third step consists of bootstrapping a large 

number 𝐿 of drawing from the above sample set of standardized returns. 

Assuming a 1-day VaR horizon (or holding period), the third stage includes bootstrapping 

from our data set of standardized returns: we take a large number of drawings from this data set, 

which we now treat as a sample, substituting each one after it has been producing and multiplying 

each such random producing by the volatility forecast 1-day ahead: 

 

𝑟𝑡 = 𝜇𝑡 + 𝑧∗𝜎𝑡+1                                                                                                                        (14) 

where 𝑧∗  is the simulated standardized return extracted from equation (13). If we take 𝑀 

producings, we therefore obtain a sample of 𝑀 replicated returns. With this method, the VaR(𝑞) 

is the 𝑞% quantile of the calculated return sample***. 

Extreme Value Theory (EVT) 

EVT approach concentrates on the limiting distribution of extreme returns observed over a long 

time span, which is indeed independent of the distribution of the returns themselves. The two 

main models for EVT are (a) the Block Maxima model (BM) (McNeil, 1998) and (b) the Peaks 

Over Threshold model (POT). In the POT method, there are two kinds of analysis: the Semi-

parametric models built around the Hill estimator and its relatives (Beirlant et al., 1996; 

Danielsson et al., 1998) and the fully Parametric models based on the Generalized Pareto 

Distribution (GPD) (Embrechts et al., 1999). In this paper we apply POT with analysis type of 

GPD. In the coming sections each one of these approaches is described.” 

Detailed description of BM and the Semi-parametric models built around the Hill estimator 

can be found in McNeil (1998) and Beirlant et al (1996), respectively. 

Peak Over Threshold model (POT). The POT model is initially said to be the most useful for 

practical applications because of more efficient use of the data for the extreme values. In this 

model, we can make a distinction between two types of analysis (a) the fully Parametric models 

based on the GPD and (b) the Semi-parametric models built around the Hill estimator. In this 

paper we shall merely introduce the first manner of analysis.  

Firstly, in line with FHS method, we applied an EGARCH (1,1) model. The specific 

parameters of the model chose based on logarithmic returns, so residuals of the model will then 

become standardized and consequently with this technique we shall gain identically and 

independently distribution residuals.  

                                                 

*** To perform this analysis we used code of MATLAB Statistic Tools. 
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Secondly, the standardized identically and independently distributed residuals will be used 

to generate empirical Cumulative Distribution function based on Gaussian kernel. Based on 

general features of financial time series the kernel Cumulative Distributed Function estimation is 

expected to be well fitted to the interior of the distribution and performing poorly in lower and 

upper tail (this will be tested whether it will be correct or not for our dataset). For this reason we 

will implement extreme value theory for all observations that fall in each tail. We select thresholds 

levels e.g. 10 per cent of data belong to both right and left tail, and then fit the data that satisfy 

our condition (e.g. fall below defined threshold). This is also known as peaks over thresholds or 

distribution of exceedances method (Davison and Smith 1990). 

Thirdly, we report value-at-risk of the considered indices at different confidence levels, from 

very low to very stringent intervals. 

Generalized Pareto Distribution (GPD): Among the random variables demonstrating 

financial returns (𝑟1, 𝑟2, … , 𝑟𝑛), we pick a low threshold 𝑢 and examine all values (𝑥) exceeding 

𝑢: (𝑥1, 𝑥2, … , 𝑥𝑁𝑢
), where 𝑥𝑖 = 𝑟𝑖 − 𝑢 and 𝑁𝑢 are the number of sample data greater than 𝑢. The 

distribution of excess losses over the threshold 𝑢 is defined as: 

 

𝐹𝑢(𝑥) = 𝑃(𝑟 − 𝑢 < 𝑥|𝑟 > 𝑢) =
𝐹(𝑥+𝑢)−𝐹(𝑢)

1−𝐹(𝑢)
                                                                            (15) 

Assuming that for a certain 𝑢, the distribution of excess losses above the threshold is a GPD, 

𝐺𝑘,𝜉(𝑥) = 1 − [1 + (
𝑘

𝜉
) 𝑥]−1 𝑘⁄   (28), the distribution function of returns is given by: 

 

𝐹(𝑟) = 𝐹(𝑥 + 𝑢) = [1 − 𝐹(𝑢)]𝐺𝑘,𝜎(𝑥) + 𝐹(𝑢)                                                                          (16) 

To build a tail estimator from this statement, the only additional part we need is an calculation of 

𝐹(𝑢). For this point, we take the evident empirical estimator (𝑢 − 𝑁𝑢)/𝑢. Next we use the HS 

method. Presenting the historical estimate of 𝐹(𝑢) and setting 𝑟 = 𝑥 + 𝑢 in the equation, we 

arrive at tail estimator 

 

𝐹(𝑟) = 1 −
𝑁𝑢

𝑛
[1 +

𝑘

𝜉
(𝑟 − 𝑢)]−1 𝑘⁄    𝑟 > 𝑢                                                                             (17) 

For a given probability 𝑞 > 𝐹(𝑢), the value-at-risk measure is calculated by inverting the tail 

estimation formula to obtain 

 

𝑉𝑎𝑅(𝑞) = 𝑢 +
𝜉

𝑘
[[

𝑛

𝑁𝑢
(1 − 𝑞)]−𝑘 − 1]                                                                                     (18) 

Where parameters 𝜉 (shape parameter)and 𝑘 (scale parameter) are estimated by MATLAB 

using Newton’s method. 

Backtesting VaR methodologies 

This section presents applied backtesting methods to value-at-risk model validation across sample 

forecast evaluation methods. Failure of backtesting specifies that value-at-risk model 

misspecification and/or large estimation errors. 

 According to the endorsements of the Basel Capital Accord in 1996, we shall implement the 

“backtesting” technique to evaluate the reliability and precision of all model considered.  
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Figure. 1 Sliding window simulation process with estimation and test sample.  

Source: Lin et al. (2009) page 2507 with slight modification by the author. 

The general simulation process uses the sliding window††† methodology. One of the main benefits 

of this method is that we prevent overlapping data in the test sample. First, we determine an 

estimation period, which defines the sample used to calculate the value-at-risk model parameters. 

Then we employ sliding window approach as follows. The estimation period is progressively 

moves one time fracture until the end of our testing, keeping the calculating period the same, 

starting at the beginning of data span. Figure 1 clarifies the rolling window method: the dark grey 

line at the bottommost shows the entire sample covering the whole data period. The estimation 

and test samples are shown in grey and dotted line, respectively; during the backtest these are 

rolled gradually, 𝑛 day at a time, until whole sample is ended.  

In our testing, estimation sample size is 1500 and sample consists of 2774 daily observations 

and the risk horizon is one day ahead. The backtest proceeds as follows. Use the estimation 

sample to calculate the one-day 𝑉𝑎𝑅𝑞 on the 1500 day. This is value-at-risk one-day return from 

the 1500th to the 1501th observation. Then, assuming the value-at-risk is stated as a percentage of 

the asset value, we observe the realized return over this one-day test period, and keep both the 

value-at-risk and the realized return. Then we slide the window forward one-day and iterate the 

prementioned process, until the entire sample is exhausted. The result of this procedure will be 

two time series covering the sample from 1501th until the 2774th observation. One series is the 

one-day value-at-risk and the other is the one-day “realized” return. The backtests is based on 

these two series. 

The conventional tests about the validity of value-at-risk models are: (a) unconditional and 

conditional coverage tests; (b) the backtesting criterion and (c) the dynamic quantile test.  

Most often backtests on daily value-at-risk are constructed on the assumption that the daily 

returns or 𝑃&𝐿 are generated by an identically normally independent Bernoulli process. A 

Bernoulli variable can take only two values, which could be labeled 0 and 1, or “failure” and 

“success”. Thus we may define an indicator function as 𝐼𝑞,𝑡 on the time series of daily returns or 

𝑃&𝐿 relative to the 𝑞% daily VaR by 

 

𝐼𝑞,𝑡+1 = {
0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

1,      𝑖𝑓 𝑅𝑡+1<−𝑉𝑎𝑅1,𝑞,𝑡,
                                                                                                     (19) 

 

here 𝑅𝑡+1 is the “realized” daily return or 𝑃&𝐿 on the portfolio from time 𝑡, when the value-at-

risk estimate is made, to time 𝑡 + 1.  

                                                 

††† Another well-known phrase is “rolling window”. In this paper we will use them interchangeably.  
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If the VaR model is accurate and {𝐼𝑞,𝑡} follows an 𝑖. 𝑖. 𝑑. Bernoulli process, the probability 

of “success” at any time 𝑡 is 𝑞. Thus the 𝑛𝑞 is equal to expected number of success in a test 

sample with 𝑛 observation. So we can use this information to build a two-sided 95% confidence 

interval for each of our indices 

 

(𝑛𝑞 − 1.96√𝑛𝑞(1 − 𝑞), 𝑛𝑞 + 1.96√𝑛𝑞(1 − 𝑞) )                                                                  (20) 

Kupiec (1995) shows that assuming the probability of an exception is constant, then the number 

of exceptions 𝑥 =  ∑ 𝐼𝑡+1 follows a binomial distribution 𝐵 (𝑁, 𝑞), where 𝑁 is the number of 

observations. An accurate VaR (𝑞) measure should produce an unconditional coverage (�̂� =
 ∑ 𝐼𝑡+1 𝑁⁄ ) equal to 𝑞 percent. The unconditional coverage test has a null hypothesis �̂� = 𝑞, with 

a likelihood ratio statistics: 

 

𝐿𝑅𝑈𝐶 = 2[log(�̂�𝑥(1−�̂�)𝑁−𝑥) − log (𝑞𝑥(1 − 𝑞)𝑁−𝑥)]                                                           (21) 

Which follows an asymptotic 𝜒2(1) distribution.   

Christoffersen (1998) developed a conditional coverage test. This jointly examines whether 

the percentage of exceptions is statistically equal to the one expected and the serial independence 

of 𝐼𝑡+1. He proposed an independence test, which aimed to reject VaR models with clustered 

violations. The likelihood ratio statistics of the conditional coverage test is 𝐿𝑅𝑐𝑐 = 𝐿𝑅𝑢𝑐 +
𝐿𝑅𝑖𝑛𝑑  (22), which is asymptotically distributed 𝜒2(2), and the 𝐿𝑅𝑖𝑛𝑑 statistics is the likelihood 

ratio statistics for the hypothesis of serial independence against first-order Markov dependence. 

 

𝐿𝑅𝑖𝑛𝑑 =  −2log [(1 − �̂�)(𝑇00+𝑇10)(�̂�)𝑇01+𝑇11)] + 2log [(1 − 𝑞0)𝑇00𝑞0
𝑇01(1 − 𝑞1)𝑇10𝑞1

𝑇11]    (23) 

Which follows an asymptotic 𝜒2(1) distribution.   

VaR estimation and backtesting analysis 

In this study, we implemented various methods of VaR estimation from all three main categories 

of VaR estimation techniques namely, Non-parametric methods (Historical Simulation), 

Parametric methods (GARCH (1,1), DCC-MGARCH, EGARCH, GJR-GARCH, and AGARCH 

(1,1)) and Semi-parametric methods (Filtered Historical Simulation with bootstrap and Extreme 

Value Theory).  

The data used in estimation and forecasting are daily evolution of returns of 6 indices e.g. 

Canadian TSX, French CAC40, German DAX, Japanese Nikkei, UK FTSE100 and US S&P500, 

from 03-June-2003 to 31-March-2014. The index data were obtained from Yahoo Finance  for 

the period June 3, 2003 to March 31, 2014. The computation of the index returns (rt) is based on 

the formula rt = ln(It/It−1) × 100, where It is the value of the stock-market index for period t.  

Preliminary statistics for the data are presented in the inner box of figure 1. For all indexes, 

the unconditional mean of daily log-returns is close to zero. The maximum and minimum values 

are between −9.78% and 9.37% for the TSX index. The skewness statistics are negative for the 

Nikkei (−0.571), FTSE (−0.157), S&P (-0.336) and positive for the TSX (0.739) and CAC (0.040) 

and DAX (0.011) .For most indexes considered, these values are very close to zero, implying that 

the distributions of these returns are not far from symmetric.  
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Figure. 2: Histograms and Normal distribution. The histograms and theoretical normal (red line) returns of stocks 

indexes. Sample run from June 3, 2003 to March 31, 2014. Visually we can claim that the distribution of all indices 

is similar to a t-student distribution. Additionally, descriptive statistics calculated for the whole period is reported 

in small boxes. The values of Kolmogorov-Smirnov test is also lower that 5% (is not reported). 

Source: Own study. 

Fig. 1 shows the histograms for each index with the theoretical Gaussian and t-Student probability 

density functions. These histograms seem symmetric. Therefore, in this paper, we consider only 

symmetric distributions. For all of the considered indices, the excess kurtosis statistics is very 

large, implying that the distribution of these returns has a much thicker tail than the normal 

distribution. Similarly, the Jarque–Bera statistics is also very large and statistically significant, 

disallowing the assumption of normality. 

The outcome of daily various VaR methods based on a range of confidence levels for the 

TSX, CAC40, DAX, Nikkei, FTSE100, S&P500 are reported in table 1.  
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Table 1: Values of VaR estimated based on various techniques - from a low to a high level of confidence.  

Quantile Index HS GARCH M-

GARCH 

E-

GARCH 

GJR-

GARCH 

A-

GARCH 

FHS EVT 

90% TSX 1,13%‡ 1,13% 1,13% 1,07% 0,98% 1,01% 1,12% 1,13% 

CAC 1,49% 1,48% 1,48% 1,40% 1,47% 1,49% 1,53% 1,49% 

DAX 1,50% 1,50% 1,50% 1,47% 1,37% 1,47% 1,50% 1,50% 

Nikkei 1,68% 1,69% 1,69% 1,76% 1,60% 1,67% 1,72% 1,69% 

FTSE 1,17% 1,16% 1,16% 1,04% 0,97% 1,09% 1,20% 1,17% 

S&P 1,21% 1,20% 1,20% 1,12% 0,98% 1,06% 1,24% 1,21% 

95% TSX 1,75% 1,76% 1,75% 1,59% 1,17% 1,60% 1,67% 1,75% 

CAC 2,23% 2,20% 2,18% 2,07% 2,11% 1,10% 2,25% 2,23% 

DAX 2,12% 2,11% 2,11% 2,12% 1,87% 1,12% 2,22% 2,12% 

Nikkei 2,37% 2,36% 2,36% 2,51% 2,27% 1,43% 2,42% 2,37% 

FTSE 1,78% 1,75% 1,75% 1,55% 1,19% 1,37% 1,78% 1,79% 

S&P 1,84% 1,85% 1,84% 1,58% 1,29% 1,23% 1,90% 1,85% 

97.5% TSX 2,20% 2,18% 2,18% 1,88% 1,50% 1,58% 2,09% 2,21% 

CAC 2,77% 2,77% 2,76% 2,51% 2,65% 2,52% 2,81% 2,77% 

DAX 2,54% 2,52% 2,52% 2,64% 2,39% 2,51% 2,78% 2,55% 

Nikkei 2,89% 2,89% 2,88% 3,17% 2,73% 2,80% 2,94% 2,90% 

FTSE 2,34% 2,26% 2,26% 1,92% 1,57% 2,20% 2,24% 2,34% 

S&P 2,40% 2,39% 2,39% 2,01% 1,70% 2,35% 2,43% 2,41% 

99% TSX 3,48% 3,42% 3,39% 2,86% 2,42% 2,73% 3,10% 3,49% 

CAC 4,06% 3,97% 3,94% 3,44% 4,01% 4,07% 4,16% 4,08% 

DAX 4,10% 3,94% 3,91% 4,03% 3,58% 3,30% 4,12% 4,12% 

Nikkei 4,33% 4,26% 4,24% 5,20% 4,22% 5,04% 4,11% 4,34% 

FTSE 3,24% 3,19% 3,19% 2,20% 2,17% 2,30% 3,32% 3,26% 

S&P 3,78% 3,69% 3,63% 2,50% 2,55% 2,49% 3,72% 3,86% 

99.95% TSX 9,69% 8,95% 8,76% 7,74% 17,76% 15,39% 9,43% 9,79% 

CAC 9,08% 8,66% 8,54% 10,76% 10,12% 11,04% 12,59% 9,47% 

DAX 7,41% 7,39% 7,38% 12,49% 7,75% 12,36% 12,52% 7,43% 

Nikkei 11,85% 10,80% 10,45% 27,25% 23,18% 24,08% 12,70% 12,11% 

FTSE 8,96% 8,29% 8,17% 6,22% 6,29% 6,12% 10,44% 9,26% 

S&P 9,44% 8,83% 8,70% 6,55% 6,76% 6,59% 12,92% 9,47% 

 

‡ it shows that with 90% confidence interval VaR of TSX index would not exceed 1.13% in next day. In other 

words, the loss of TSX index will not exceed more than 1.13% of its value one-day horizon. 

Source: own study. 

In this section we would like to explain in details the way we calculated VaR of the two most 

sophisticated methods e.g. Filtered Historical Simulation with bootstrap and then Extreme Value 

Theory. 
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Filtered Historical Simulation with Bootstrap technique 

No dividend adjustments are explicitly taken into account. Then with encoding equation (12) in 

MATLAB we model an asymmetric Exponential GARCH model to the conditional variance. 

Next step is to implement code segment calculate the autoregressive order (1) plus Exponential 

GARCH (1, 1) model. So, implementing this technique will enable us to extract the filtered 

residuals and conditional variance from each index return. Obtaining filtered the model 

innovation from the indices return series; standardize each innovation by the corresponding 

conditional standard deviation. These SIs represent the underlying unit-variance, zero-mean, 

𝑖. 𝑖. 𝑑. series. The 𝑖. 𝑖. 𝑑. character is necessary for bootstrapping, and lets the sampling procedure 

to safely prevent the drawbacks of sampling from a population in which consecutive observations 

are serially dependent. To make the innovations standardized we shall apply equation (13). 
 

 

Figure 3: Plot of filtered residuals and volatility. The bottom plot exhibits existence of heteroskedasticity in the 

filtered residuals. The lower graph clearly illustrates the variations in volatility (heteroskedasticity) present in the 

filtered residual. 

 

 

Figure 4: Sample ACF of French CAC index standardized residuals (similar results obtained for the rest of series).                

As cited in section II, filtered historical simulation bootstraps SIs to create paths of future asset 

returns and, hence, makes no parametric assumptions about the probability distribution of those 

returns.  

The bootstrapping procedures 𝑖. 𝑖. 𝑑.  SIs is in line with those obtained from the AR(1)-

EGARCH(1,1) filtering process above. Exploiting the bootstrapped SIs as the identically and 

independently distribution input noise process, reestablish the autocorrelation and 

heteroskedasticity observed in the original index return series via the Econometrics Toolbox™ 

filter function. Obtaining simulated the returns of indices report the estimated value-at-risk at 

various confidence levels, over the one-day risk horizon is reported in Table 1 Part C.  
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For instance, based on filtered historical simulation method- Table 1 part C- figure 1.12% 

represent the value-at-risk of Canadian TSX index with 90 per cent confidence level, over one 

day horizon. In other words, it means that only with ten percent probability the VaR of Canadian 

TSX with exceed from 1.12% of its value over one-day horizon. 

Extreme Value Theory 

As mentioned in section ΙΙ modeling the tails of a distribution with a generalized Pareto 

distribution necessitates the data under examination to be approximately 𝑖. 𝑖. 𝑑. To do so, we shall 

implement the same procedure similar to section ΙI equations 13,14, and 15 in MATLAB to 

obtain our desirable data series. Results of Japanese Nikkei 225 index are summarized in figure 

2. Results for rest of data e.g. Canadian TSX index, French CAC 40 index, German DAX index 

and US S&P 500 index can be found in appendix. 
 

 

Figure 5: (Left) Filtered residuals and filtered conditional standard deviations of Japanese Nikkei 225 index. 

(Right) Shows the 3D ACF of standardized residuals of Japanese Nikkei index.  

Having the standardized, identically and independently distribution of innovations from the 

previous stage, calculate the empirical cumulated distribution function of each index with a 

Gaussian kernel. This smoothes the cumulative distribution function estimates, removing the 

staircase shape of unsmoothed sample cumulated distribution functions. Although non-

parametric kernel cumulated distribution function estimates are well fitted for the interior of the 

distribution where most of the data is concentrated, they tend to perform weakly when 

implemented to the upper and lower tails. Implement Extreme Value Theory to those innovations 

that fall in each tail to suitably calculate the each tail of the distribution. Precisely, find upper and 

lower 𝑢 (threshold, the main function of) in implementation of equations 19,20,21, and 22 such 

that 10 per cent‡‡‡ of the innovations in this paper are reserved for each tail. Afterward, based on 

mentioned method in section II, we shall apply Peak Over Threshold method as following.  

Fit the amount by which those extreme innovations in each tail fall above the determined 𝑢 

to a parametric generalized Pareto distribution by maximum likelihood. Finally given the 

exceedances in each tail, optimize the negative log-likelihood function to estimate the shape 

                                                 

‡‡‡ The value of threshold is optional. Though, the sample mean excess function (MEF) is applied in some papers 

to determine the value of threshold more appropriately. Additionally, Neftci 2000 proposed another methods in his 

paper.  
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parameter (𝜉) and sclae parameter (𝑘) via MATLAB Econometrics Toolbox™ and then plug 

their values in equation (18) to estimate VaR based on EVT with difference confidence level over 

one-day horizon. The results of implementing previous steps on Japanese Nikkei 225 index are 

summarized as it is depicted in table 1, Part D, that summarizes the estimated VaR of indices 

considered based on EVT for different confidence level for one-day horizon. For instance, figure 

4,12% refers to VaR of German DAX index with 99% confidence level. In other words, it states 

that with 99% confidence level VaR of DAX index will not exceed 4,12% of value of German 

DAX index over next trading day. 

 

 

Figure 11: (Right )Empirical CDF of Japanese Nikkei 225 index.  Plot of Pareto lower and upper tails. (Left) 

Shows Filtered Generalized Pareto CDF vs. empirical CDF of Japanese Nikkei index.  

Source: own study 

Backtesting results. 

The VaR estimates, on April 01 2014, for all indices based on implementing methods considered, 

are presented in previous sections, whereas their test sample performance is evaluated in tables 2 

and 3. This evaluation is based on one-step-ahead forecasts that have been produced from a series 

of rolling samples with a size 1500 observation and we shall base test on the 10%, 5%, 2.5%, 1% 

and 0.05% daily VaR for various methods and test have been suggested in section ΙΙ.5 for 

evaluating VaR model accuracy. In this paper, we implement tests (equations 21 and 22) for 

covering probability. 

 In Table 5, we present the test statistics for the conditional test sample performance of 

various methods considered. The main evidence from this backtesting exercise is that the models 

perform equally well at low confidence level (e.g. from 90% up to 97.5%). However from the 

99% level and beyond the superiority of the extreme values technique clearly emerges since it is 

the only method where not a single case exists with statistically significant forecasting failures. 

Looking at the all indices, except EVT, Historical Simulation and Filtered Historical Simulation 

also performed very satisfactory which were beyond expectation. Historical Simulated estimate 

VaR of four indices for all confidence intervals precisely, namely TSX Canadian Index, French 

CAC 40 index, German DAX and Japanese Nikkei 225 index. Filtered Historical Simulation, 

except one case, estimated VaR in all confidence level and for all indices precisely.  

In this experiment among all GARCH model, only GARCH (1, 1) model and to some lower 

extend MGARCH perform accurate. The results for EGARCH and GJR-GARCH are really poor 

in our experiment for all indices. 
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Likelihood ratio tests statistics for the conditional 𝐿𝑅𝑐𝑐,  Equation (26), out-of-sample 

performance of various methods in different confidence level of indices considered. 

 

Table 2: Backtesting period: January 04, 2009 to March 31, 2014. Red numbers indicate significance at the 95% 

level. 𝐿𝑅𝑐𝑐 is  𝜒2 with 2  DoF.  

Source: own study. 

Number of exceedances, F, and 95% 𝐿𝑅𝑢𝑐 non-rejection confidence regions for indices considered.  
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Table 3: Backtesting sample period: April 01, 2009 to March 31 2014. Red figures indicate statistically significant 

underestimation or overestimation of value-at-risk. F is the number of failures that could be observed without 

rejecting the null that the models are correctly calibrated at the 95% level of confidence. 

In Table 3, we present the number of exceedances in each case and compare them with an interval 

of numbers that would be consistent with the probability level under which the VaR estimates 

have been produced. Those intervals for LR𝑢𝑐test have been derived from equation (20). Again, 

we reconfirm for all indices the previous results whereas at high confidence levels the EVT 

method are generating the best performance. The Parametric models have also recorded a similar 

failure whilst, Historical Simulation and Filtered Historical Simulation recorded a much better 

results. 

 

 

 

 

 

 

Summary of results and conclusion 
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Value-at-Risk (VaR) is one of the most popular risk measures used in realm of finance. The 

precise estimation of VaR is a crucial task for any financial institution, in order to arrive at the 

accurate capital requirement in response to framework of Basel ΙΙ and meet the adverse behaviour 

of the market. We have illustrated the implementation of Historical Simulation, GARCH, 

EGARCH, AGARCH, GJR-GARCHEVT, DCC-MGARCH, Filtered Historical Simulation and 

finally Extreme Value Theory that are a combination of traditional and new tools toward risk 

measurement in a univariate distribution framework. There are different attitudes toward 

estimating Value-at-Risk, and most of them falsely assume that stock returns come from a normal 

distribution or multivariate normal distribution in the case stock portfolio. The three approaches 

that we illustrated in this paper are (a) Parametric approach that uses a long series of stock return, 

giving the same weight to each of them, assumes that the empirical distributions observed in the 

past mirrors future changes, (b) Non-parametric approach in which assume some assumption 

associated with behavior of stock returns. For instance, in this approach they assign the parameter 

of 𝛽 to market risk as well as parameter 𝜆 to leverage effect and (c) Semi-parametric method that 

uses the non-parametric empirical distribution to capture the small risks and the parametric 

method based on EVT to capture large risks in result of rare events. 

The use of EVT in the model improves the calculating of value-at-risk for extreme quantile 

because apart from modeling the fat tails it permits for extrapolation in the tails above the data 

series.  

Our major conclusion is that the EVT outperform other techniques considered in this paper. 

However Extreme Value Theory suffers from strong statistical underpinning and requiring a 

high level of programing and modeling skills either in MATLAB or R, meanwhile results are 

completely satisfactory and consistently reliable in different business cycles especially for high 

volatility periods. In our experience for a moderately calm period ,Apr. 2014, we estimate VaR 

of S&P 500 equal to 9.47 per cent with 99.95 per cent confidence level which seems reasonable 

for movements of these days stock indices and is in line with results of Berger (2013),Brooks el 

al. (2005), Neftci (2000),Raggad (2009),Lin et al., (2009), Bali (2007), Stelios et al. (2005), Abad 

el al., (2012), among others. And in line with Raggad (2009) Filtered historical Simulation and 

Historical Simulation perform satisfactory especially from low level of confidence, 90% to rather 

high level of confidence 99%. 

All in all in our experiment, GARCH models did not exhibits a good performance in 

estimating VaR. meanwhile, GARCH (1, 1) and MGARCH exhibits a better performance 

especially in lower confidence level. My intuition about the reason for poor performance of 

GARCH can be probed in our data. It is fact that GARCH model are persistent to unordered 

movements in stock returns. Inclusion of a high volatile period like wake of 2008 financial crisis 

in our data negatively affects on predictability power of almost all GARCH models. Since in 

section ΙΙ we detected property of leptokurtosis and negative skewness among the data and when 

the function form of parametric distribution has leptokurtosis and negative skewness, the 

empirical value-at-risk estimated at high confidence level (97.5, 99, 99.95) was greater than the 

VaR estimated by non-parametric and Semi-parametric methods. However, the opposite is yet 

correct at the lower confidence levels (0.90 and 0.95) in our experiment.  

In this step, we find it suitable to suggest future research based on GARCH model if they 

want to estimates VaR for short-period it is better to take a shorter horizon time maximum 5 years 

to data under examination be a good representative of current market status. Because it is hardly 

possible that equity markets will return to their previous levels of volatility such as 2008 credit 

crisis within a short risk horizon like one or even next 10 trading days. 

We suggest, for further research, to probe the performance of GARCH models in two 

homogeneous periods. A calm and a volatile period and compare their result of performance of 

GARCH model in each period. 
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Furthermore, we suggests that further work needs to be done to test the sensitivity of EVT 

model based on the choice of threshold level, 𝑢,. 
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Appendix  

Table 1: Lagged daily return 

s regression of French CAC 40 Index. 

  Coefficients SE t Stat P-value Lower 95% Upper 95% 

Intercept 0.000 0.000 0.503 0.614 0.000 0.000 

Lagged return 0.052 0.018 2.753 0.005 0.089 0.015 

  

 

Figure 1: ACF of CAC 40 Index. It reveals that just first lag crosses the 95% bounds. 
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Figure 2: The sample ACF of the squared returns illustrates the degree of persistence in variance. 

Table 2: Lagged daily returns regression of German DAX index 

  Coefficients SE t Stat P-value Lower 95%  Upper 95% 

Intercept 0.000 0.000 1.570 0.116 0.000  0.000 

Lagged return 0.006 0.019 0.341 0.732 0.043  0.030 

 

 

Figure 3: ACF of German DAX index shows breaking 95% bounds in several times. 
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Figure 4: The sample ACF of the squared returns illustrates the degree of persistence in variance. 

 

Table 3: Lagged daily returns regression of Japanese Nikkei 225 index. 

  Coefficients SE t Stat P-value Lower 95% Upper 95% 

Intercept 0.000 0.000 0.676 0.498 0.000 0.000 

Lagged return  0.035 0.018 1.85 0.051 0.072 0.001 
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Figure 5: ACF of Japanese index really closing to beating 95% bounds just in first lag with p-value close to 5%.

 

Figure 6: The sample ACF of the squared returns illustrates the high degree of persistence in variance until lag 12 

and mild onward. 

Table 4: Lagged daily returns regression of UK FTSE 100 index. 

  Coefficients SE t Stat P-value Lower 95% Upper 95% 

Intercept 0.000 0.000 0.765 0.444 0.000 0.000 

Lagged return 0.048 0.018 2.560 0.010 0.085 0.011 
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Figure 7: ACF of UK index exceeding 95% bounds just in first lag with a significant p-value equal to 1%. 

 

Figure 8: The sample ACF of the squared returns illustrates a high degree of persistence in variance. 

Table 5: Lagged daily returns regression of US S&P 500 index. 

  Coefficients SE t Stat P-value Lower 95% Upper 95% 

Intercept 0.000 0.000 1.261 0.207 0.000 0.000 

Lagged return 0.111 0.018 5.895 4.19E 0.148 0.074 
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Figure 9: ACF of US S&P 500 Index. It reveals that just first lag crosses the 95% bounds. 

 

Figure 10: The sample ACF of the squared returns illustrates a high degree of persistence in variance. 
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Figure 11: ACF of standardized residuals of Canadian TSX index. Source: Yahoo! Finance. 

 

Figure 12: ACF of squared standardized innovations of Canadian TSX index. Source: Yahoo! Finance. 
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Figure 13: Plot of filtered innovations and filtered conditional standard deviations of Canadian TSX index. Source: 

Yahoo! Finance. 

 

 

Figure 14: Empirical CDF of TSX index. Source: Yahoo! Finance. 
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Figure 15: Filtered Generalized Pareto CDF v empirical CDF. Source: Yahoo! Finance. 

  

Figure 16: Filtered innovations and filtered conditional standard deviations of French CAC 40 index. Source: 

Yahoo! Finance. 
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Figure 17: ACF of standardized innovations of French CAC 40 index. Source: Yahoo! Finance. 

 

Figure 18: ACF of squared standardized residuals of French CAC 40 index. Source: Yahoo! Finance. 
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Figure 19: Empirical CDF of French CAC 40 index. Source: Yahoo! Finance. 

 

Figure 20: Filtered Generalized Pareto CDF vs empirical CDF of CAC index. Source: Yahoo! Finance. 
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Figure 21: Plot of filtered innovations and filtered conditional standard deviation of German DAX index. Source: 

Yahoo! Finance. 

 

Figure 22: ACF of standardized innovation of German DAX index. Source: Yahoo! Finance. 
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Figure 23: Empirical CDF of Nikkei index. Source: Yahoo! Finance. 

 

Figure 24: Filtered Generalized Pareto CDF vs empirical CDF of DAX index. Source: Yahoo! Finance. 
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Figure 25: Plot of filtered innovations and filtered conditional standard deviation of UK FTSE 100 index. Source: 

Yahoo! Finance. 

 

Figure 26: ACF of standardized innovations of UK FTSE 100 index. Source: Yahoo! Finance. 
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Figure 27: ACF of squared standardized innovations of UK FTSE 100 index. Source: Yahoo! Finance. 

 

Figure 28: Empirical CDF of FTSE 100 index. Source: Yahoo! Finance.  
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Figure 29: Filtered Generalized Pareto CDF vs. empirical CDF of FTSE 100 index. Source: Yahoo! Finance. 

 

Figure 30: Plot of filtered residuals and filtered conditional standard deviations of US S&P 500 index. Source : 

Yahoo! Fiance. 
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Figure 31: ACF of standardized innovations of US S&P 500 index. Source: Yahoo! Finance. 

 

Figure 32: ACF of squared standardized innovations of US S&P 500 index. Source: Yahoo! Finance. 
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Figure 33: Empirical CDF of S&P 500 index. Source: Yahoo! Finance. 

 

Figure 34: Filtered Generalized Pareto vs. empirical CDF of S&P 500 index. Source: Yahoo! Finance. 
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