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Abstract. Bounded stochastic processes may be occupied for modelling the 

underlying price process in options pricing. Bounds can be included in some 

shallow markets by ceiling-floor price rule. It is useful to apply such a rule when 

an increase in the liquidity is needed. Log-normal process brings some bias on 

the premium of options. It is possible to reduce the bias by adding more 

parameters like jump diffusion, stochastic volatility or regime switching. As a 

result closed form solutions and numerical approximations suffer from increased 

dimension. Monte Carlo integration then appears to be unique solution for high 

dimensional calculations. However variance of the output of interest should be 

decreased in order to have confident results. The method of Importance Sampling 

can be used in an attempt to reduce error term. We test the bounded log-normal 

process with Importance Sampling Monte Carlo Simulation. Our analysis is 

based on the theory of variance reduction. Numerical results indicate that the risk 

neutral density should be substituted in the range of moneyness. 
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Introduction 

In developed financial markets firms and individuals seek new methods to minimize the risk 

arises from their transactions. Options allow investors to control the risk level when included 

to the portfolios. Huge amount of transactions in the options market makes options pricing 

one of the most attractive topics. Very famous Black and Scholes (1973) model lightened 

options pricing process. Their assumptions have been analysed enormously. In this study we 

test bounded log-normal process in terms of variance reduction capability. 

 It is impossible to specify the probability distribution of risky asset returns. Options 

pricing is based on a different probability space that calculations are done with respect to 

arbitrage free principle and risk neutral pricing. In this probability space asset price is simply 

an expectation of the discounted measure of its terminal value. The expectation is taken under 

an equivalent (semi) martingale measure which is a mapping of original probability 

distribution of the asset returns. Arbitrage free principle provides existence of an equivalent 

martingale measure which is not unique if the market is incomplete, Liu and Zhao (2013). It's 

assumed that logarithmic returns have an equivalent normal distribution in Black/Scholes 

model. Hence, distribution of the asset price becomes log-normal. Merton (1976) added price 

jumps to the log-normal process. However final model cannot prevent some bias on premium 

which increases with the maturity of the option. There are two main reasons for the bias. First 

one is market crashes not reflected by log-normal process with constant volatility. Hull and 

White (1987) introduced basic solution to stochastic volatility models excluding correlation 

between the volatility and spot price. Heston (1993) and Aїt-Sahalia and Kimmel (2006) tried 
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to find closed form solutions for general stochastic volatility models. Second bias comes 

from the market frictions such as transition costs and bid-ask spread. Longstaff (1995) 

calculated implied volatility of S&P index call options for two years and found the result that 

implied volatility of S&P index options has a smile pattern. This is known as volatility smile 

anomaly and studied by various authors like Rubinstein (1994), Neumann (1998) and 

Jackwert and Rubinstein (1996). Black/Scholes model imposes to observe the current 

underlying price from the market but Longstaff (1995) relaxed the underlying S&P index 

values and showed that it is more expensive to purchase the underlying asset from options 

market than the stock market. This is because of more transaction costs of options market. 

But Jackwert and Rubinstein (1996) showed that even the transaction costs remain constant 

the volatility smile happens to have different patterns for options with different underlying 

assets which proves that the only reason for the bias is not market frictions. Longstaff (1995) 

defined this basic assumption as martingale restriction. Estimating the implied index value 

and the implied volatility is the same as estimating the first and the second moments of the 

risk neutral underlying density which is assumed to be log-normal in most cases. Hence, 

diversification is mostly caused by the log-normal process itself. Neumann (1998) used two 

log-normal distributions as a mixed distribution to fit empirical data better. Neumann (1998) 

calculated parameters of the mixed log-normal distribution with least squares error technique. 

The analysis gets dependent to market events if any term is selected for the input data. The 

contribution of our study is that we do not use empirical data to test the risk neutral density. 

We carry out Importance Sampling Monte Carlo integration technique to the log-normal 

stochastic price process to evaluate the fair price of options. 

 Other advances to come up with the bias of Black-Scholes model are based on regime 

switching models. Bastani et al, (2013) study on American options with a radial basis 

collacation method. Boyle and Draviam (2007) studied on exotic options under regime 

switching model. Liu and Zhao (2013) deal with lattice methods for two underlying assets in 

regime switching model. Single risk-neutral density is not enough to represent the dynamics 

of option prices. Therefore randomly changing combination of Lévy processes included to 

the models. Brownian motion is the only Lévy process having continuous patterns. On the 

other hand, regime switching models with general Lévy processes are discrete realizations of 

the actual process whose states are determined by a continuous time Markov chain. Thus, it is 

allowed to specify long run equilibrium probabilities. The rate of return of the regime 

switching models with a number of parameters converges to the expected risk neutral rate. 

 The paper is organized as follows. Section 2 is devoted to the options pricing basis 

with log-normal underlying price process. Section 3 is concerned with Monte Carlo 

integration framework and Importance Sampling technique. Section 4 is devoted to the 

numerical study while numerical results are discussed in the sense of variance reduction 

capability. And concluding remarks are set at the end. 

Options Pricing in Closed Form 

Black and Scholes (1973) model is based on the main assumption of normal distributed 

logarithmic returns. The underlying asset price follows a geometric Brownian motion which 

is also called log-normal process. Then underlying price dynamics were reflected by a 

stochastic differential equation (SDE) as 

 𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 (1) 

where 𝑆𝑡 ∈ 𝑄+ is the spot price, 𝜇 is annual drift, 𝜎 is annual volatility of underlying and 

𝑑𝑊𝑡 is the Wiener process. One easy way to show the derivation of this SDE is as follows: 

For one period, risky asset price can be expressed as  
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 𝑆𝑡 = 𝑆𝑡−1𝑢𝑡 (2) 

where 𝑢 ∈ ℝ+ is a random variable which includes all economic information to change the 

price. Next step is to have logarithm of both sides and to start from the initial state 

 log 𝑆𝑡 = log 𝑆0 + ∑ log 𝑢𝑘  .

𝑡

𝑘=1

 (3) 

In equation (3) all log 𝑢 = 𝜉  are selected normal random variables with 𝜉 ~N (𝜇, 𝜎2)  as 

imposed in Black and Scholes (1973). As a result logarithmic price (log 𝑆𝑡)  becomes a 

normal random variable since summation of normal random variables is still a normal 

random variable. A constant log 𝑆0 can be added to the summation while keeping normal 

property. The expectation and variance of the logarithmic price can be calculated from 

equation (3) where E[log 𝑆𝑡] = log 𝑆0 + 𝜇𝑡 and Var[log 𝑆𝑡] = 𝜎2𝑡. Taking into consideration 

the stochastic normal random variable 𝑋𝑡 = log
𝑆𝑡

𝑆0
,  standard normal z can be expressed as in 

the following 

 𝑧 =
𝑋𝑡 − 𝜇𝑡

𝜎√𝑡
. (4) 

and equation (4) can be arranged as  

 log 𝑆𝑡 − log 𝑆0 = 𝜇𝑡 + 𝜎√𝑡𝑧𝑖 (5) 

where 𝑧𝑖 ~N (0,1)   represents a random number for simulation trials. Then we have 

differential for both sides in equation (5) and get 

 𝑑 log 𝑆𝑡 = 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 (6) 

where √𝑡𝑧𝑖 is substituted with  𝑑𝑊𝑡 since it is a random variable satisfying Brownian motion 

 (𝐵(𝑡) − 𝐵(0)~N(0, 𝑡)). Further discussion about stochastic calculus can be found in Seydel 

(2006) and Benth (2004). Finally in equation (6) differential of logarithmic price is 

substituted with 𝑑 log𝑆𝑡 =
𝑑𝑆𝑡

𝑆𝑡
  and after an easy arrangement equation (1) is found. 

Parabolic SDE has a boundary at expiration time 𝑡 = 𝑇 which serves as the option 

price. Payoff function for call option is  𝑚𝑎𝑥(𝑆𝑡 − 𝐾, 0) where K is exercise price. When 

𝑆𝑡 < 𝐾 call option pays off zero. And payoff function for put option is 𝑚𝑎𝑥(𝐾 − 𝑆𝑡, 0). The 

prices of call option and put option were calculated by solving SDE in Black and Scholes 

(1973).  

Underlying price process is of high importance because it figures out the expected 

terminal value of the underlying and it specifies the payoff. Risk neutral pricing principles 

force the rate of return to be bounded in order to prevent any arbitrage opportunities. 

Nevertheless under low volatility conditions stochastic price process can be substituted with 

some alternatives. For example bounded log-normal process would be almost the same as the 

original in a stable market. If volatility is high it may work with sufficiently large bounds. 

Consequently the dimension of state space can be decreased.  
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Options Pricing with Monte Carlo Simulation 

Option price (so called premium) is discounted value of the payoff under a risk neutral 

interest rate. Payoff is simply an expectation of the return determined by underlying price 

vector in arbitrage free environment. It is possible to generate future price vector with a 

random walk under an equivalent martingale measure. The price is calculated with the 

following formula for log-normal process. 

 𝑆𝑖+1 = 𝑆𝑖𝑒
(𝑟−

𝜎2

2
)∆𝑡+𝜎√∆𝑡𝑧𝑖  , 𝑧𝑖~N(0,1) (7) 

where r is the riskless interest rate and 𝑆0 is observed from the market. Time frame ∆𝑡 is set 

in years and might have ∆𝑡 = 1/252 for working days per year in case of daily closing prices 

are simulated. When terminal value is identified with using equation (7) e.g European put 

option premium can be calculated with 

 𝑉𝑝(𝑆, 𝑇) = 𝐸𝐿𝑁[𝑒−𝑟(𝑇−𝑡)(𝐾 − 𝑆𝑇)+] . (8) 

Monte Carlo Integration 

Monte Carlo integration technique is widely used in derivatives pricing . Many problems in 

this area can be formulated as integrals over a single model distribution or highly multi-

modal distributions in result of expectations like 

 𝜃𝑓 = 𝐸𝑓[𝑞(𝒙)] = ∭ 𝑞(𝒙)𝑓(𝑥)𝑑𝒙
.

𝑅𝑑

 (9) 

where 𝑞(𝒙)  is a real valued function of interest. The notation 𝜃𝑓 , 𝐸𝑓  denotes that the 

expectation is taken with respect to density 𝑓(∙)  which belongs to the d-dimensional 

probabilistic state space Ω. If it is hard to find a closed form solution to equation (9) Monte 

Carlo simulations can be warranted to provide approximate results. Simulations driven by 

random inputs will produce random outputs. And those random outputs are the estimation of 

the exact results. The accuracy of this estimation strongly depends on quality of sampling 

which can be improved in two ways:  

•  increasing the cardinality of sampling or, 

•  introducing some kind of selection rules that make it more representative.  

The first choice is limited way whereas the second requires to apply some special techniques 

like Importance Sampling (IS) which is explained in the next section. 

Importance Sampling as a Variance Reduction Technique 

In Monte Carlo applications variance of the output random variable should be reduced 

without disturbing its expectation which means smaller confidence intervals. Importance 

Sampling (IS) introduces definite selection rules to generate most likely configurations to 

obtain more accurate values of statistical averages. Certain values of the input random 

variables in a simulation have more impact on the parameter being estimated than others. If 

these important values are emphasized by sampling more frequently, then the estimator 

variance could be reduced. Yön and Goldsman (2006) deal with some useful biasing methods. 

Hence, the basic methodology is to choose a new distribution which encourages the 

important values. This use of a biased distribution will result in a biased estimator. However, 

the simulation outputs are weighted to correct for the use of the biased distribution, and this 
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ensures that the new IS estimator is unbiased, Broadie and Glasserman (1997). IS can be 

carried out as in the following way: 

 𝜃𝑔 = 𝐸𝑔 [𝑞(𝒙)
𝑓(𝒙)

𝑔(𝒙)
] = ∭ 𝑞(𝒙)

𝑓(𝒙)

𝑔(𝒙)
𝑔(𝑥)𝑑𝒙 .

.

𝑅𝑑

 (10) 

Random samples are generated from 𝑔(∙) ∈ Ω which is called IS density. 𝑔(𝑥) enables to 

calculate the correction factor  
𝑓(𝒙)

𝑔(𝒙)
  which is sometimes called weight function. Based on 

sample weights accumulated during sampling the correction factor compensates for statistical 

fluctuations and lead to a lower variance. In equation (10) the IS density 𝑔(𝑥) should assign 

higher probabilities to important region while holding 𝜃𝑓 = 𝜃𝑔 , Yön (2007). Then the 

estimator can be calculated as 

 𝜃𝑔̂ =
1

𝑁
∑ (𝑞(𝒙𝒊) ∏

𝑓(𝑥𝑗)

𝑔(𝑥𝑗)

𝑑

𝑗=1

)

𝑁

𝑖=1

 (11) 

where N is the replication number and d is the dimension of the multivariate underlying 

distribution. Note that 𝑓(∙) and 𝑔(∙) are two independent densities. Finally Mean Squared 

Error (MSE) of the estimator is calculated with formula 

 𝑀𝑆𝐸 =
∑ (𝜃𝑖 − 𝜃𝑔̂)

2𝑁
𝑖=1

(𝑁 − 1)
 . (12) 

The successful IS density leads lower possible MSE. This implies that underlying stock 

dynamics can be represented better with an alternative IS distribution. Detailed features of IS 

densities is given at Yön (2007) and Broadie and Glasserman (1997). 

Numerical Results 

We test bounded log-normal process from a variance reduction point of view by nominating 

Importance Sampling (IS) technique. We first carry out crude Monte Carlo simulation and 

then run IS for the same input variables. Bounded process is applied as in a way that the 

trading price is allowed to change in 10% limits for up and down directions with respect to 

previous day's closing price. We try to implement a number of underlying distributions as IS 

densities like Gama, truncated Pareto and mixture of log-normal distributions. Numerical 

results indicate that it is possible to have high variance reduction for a wide range of 

moneyness. We fix the input parameters as 𝑇 = 1 year, 𝑟 = 10%,  𝐾 = 50 and relaxed the 

spot price in the range of 𝑆0 ∈ [30,70] with unit increments. We have two groups of runs 

according to volatility in the market. We have small volatility 𝜎 = 20% and large volatility 

𝜎 = 80% in order to observe the effect of high and low variation. We develop an efficient C 

program that the simulation with one million replications takes a few seconds. Figure 1a and 

Figure 1b show the graphs of call option and put option price changes for high volatility. We 

have results in line with expectations. Bounds make call option price lower because the 

increase in the underlying price is limited with bounds. Expected call payoff is reduced. Zero 

is a natural lower bound for all assets but payoff for call is reduced with upper bound. In 

contrast, put option price increases with bounds because the probability of put option being 

worthless is reduced with upper bound. And payoff for put increases. General trend with low 
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volatility is similar to high volatility case but the results are so close. The difference in values 

of three lines for low volatility case is so little that cannot be displayed in a large scaled graph. 

 

 Figure 1a: Call option price is graphed with 

respect to spot price. 𝐾 = 50  is fixed. 

Unbounded process and Black/Scholes prices are 

very close whereas bounded process gives lower 

prices for call options. 

 

Figure 1b: Put option price is graphed with 

respect to spot price. 𝐾 = 50  is fixed. 

Unbounded process and Black/Scholes prices are 

again very close. However bounded process 

gives higher prices for put options. 

 

 

Numerical results also show that it is possible to have higher variance reduction for out-the 

money options. Intuitively this suggests to have different underlying distributions for 

different moneyness regions. Then it would be possible to reflect the underlying price 

dynamics better.  

Conclusions 

Economic data influence prices a lot, contribution of our study is that we do not use term 

dependent empirical data. We used variance reduction technique and simulation to test the 

lognormal process. The possibility of high variance reduction shows that original risk neutral 

measure of log-normal distribution cannot completely reflect the underlying price dynamics. 

We used importance sampling in our analysis. The basic idea is to compute a correction 

factor to the importance sampling estimates. Better alternatives could be found by easy 

combination of continuous distributions. Bounded lognormal process is suitable for some 

markets. Both approaches could be better in the form of a risk neutral density for different 

moneyness regions. 
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