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Abstract: This paper presents new approach to financial modeling and forecasting 

that is based on economic space notion. Economic space is defined as 

generalization of risk ratings and allows boost methods and description of 

financial processes. Risk ratings of economic agents are treated as coordinates of 

economic agents on economic space. Economic and financial variables of separate 

economic agents determine macroeconomic and financial variables as functions of 

time and coordinates on economic space. That permits describe financial relations 

similar to mathematical physics equations. Financial models can be described on 

discreet and continuous economic spaces with dimension determined by number of 

major risks measured simultaneously. To show advantages of economic space 

usage to financial modeling we present extension of Black-Scholes-Merton 

equation on n-dimensional economic space; develop macroeconomic models on 

economic space in a way similar to hydrodynamics and derive financial wave 

equations. 
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Introduction 

This paper presents new approach to economic and financial modeling that is based on 

economic space notion. Economic space is defined as generalization of risk ratings and allows 

boost methods and description of financial processes. Risk ratings of economic agents are 

treated as coordinates of economic agents on economic space. Agent based economic modeling 

(Judd & Tesfatsion (2005)) has a long history. The term “economic space” was used in 

economics at least since Perroux (1950), and mostly relates to spatial econometrics (Asada & 

Ishikawa, (2007) and Fujita (2010)). Out treatment of economic agents and economic space is 

completely different. Let regard economic agents as economic “particles” on economic space 

and develop economic models alike to description of many particles systems in physics. Each 

economic agent is described by set of extensive economic and financial variables as Supply 

and Demand, Production Function and Capital, Consumption and Value and etc. Aggregation 

of extensive variables of separate economic agents at point x on economic space permit 

introduce macroeconomic and financial variables as functions of coordinates on economic 

space. Such approach allows establish parallels with physical kinetics and hydrodynamics and 

permit derive wave equations for financial variables. Wave processes play fundamental role 

for most physical phenomena’s. It seems important develop and study models that describe 

wave generation, propagation and interaction of economic and financial variables. 
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The paper is organized as follows. In Section 2 we argue economic space notion. In 

Section 3 we discuss option pricing on n-dimensional economic space and derive extension for 

Black-Scholes-Merton equation. In Section 4 we present macroeconomic models similar to 

hydrodynamics and derive financial wave equations on economic space. The conclusions are 

in Section 5.  

On economic space notion 

Any attempt to develop a theory on certain space requires procedure that measure coordinates 

on a given space. In physics such problem is solved by measurements of coordinates of physical 

particles and bodies on a space-time.   

We propose that current risk management and risk ratings in particular form basis for 

economic space definition. Let note BIS (2011, 2014) as brief references for economic and 

financial risk management studies and risk ratings that are provided by international rating 

agencies as Fitch (2010), Moody’s (2007), S&P (2012) and DBRS (2015). Let assume that risk 

ratings can be established for any economic agent.  

Current risk ratings procedures distribute economic agents like companies, corporations 

and banks over finite number of risk grades, like AAA, BB, CCC and so on. Each risk grade 

can be treated as a point of discreet space. Risk ratings procedures provided by rating agencies 

can be treated as measurements of coordinates of economic agents on discreet space. Risk 

grades of a single risk can be treated as coordinates on one-dimensional discreet space. The 

simultaneous estimations of risk grades for n different risks are similar to measuring 

coordinates on n-dimensional discreet space. Existing risk ratings practices can be treated as 

procedures that distribute economic agents on discreet space. Let mention such space as 

economic space and state that positive direction along each axis is treated as risk growth 

direction and negative direction points to small risks values.  

Current risk ratings methodologies presented by Fitch, Moody’s, S&P and DRBS utilize 

finite number of risk grades that can be treated as discreet space points. Let propose that these 

methodologies can be extended from discreet to continuous risk space representation. We 

suggest study n different risk ratings on Euclidian space Rn. Description of economic agents 

and their economic variables as functions on economic space allows define and describe 

macroeconomic and finance variables. For example, aggregate Money Demand of separate 

economic agents that have coordinates near point x determine macroeconomic Money Demand 

at point x. Money Demand becomes a function of economic space coordinates and integral of 

Money Demand function over economic space defines Money Demand of entire Economics. 

Thus financial variables of economic agents form basis for definition of macroeconomic 

variables as functions on e-space. Let refer Euclidian space Rn or discreet space, or any other 

mathematical space that is used for mapping risk grades of economic agents as economic space 

or e-space. Below we develop economic modeling on Euclidian Rn economic space. 

Definition of economic space as an extension of risk grades and ability to describe global 

financial variables as functions on economic space allows apply modern methods of 

mathematical physics and enrich financial modeling. On the other hand introduction of 

economic space arises new problems that outline internal complexity of global financial 

modeling and forecasting. 

To describe financial processes on economic space Rn it is necessary determine n risks 

that disturb finance system. It seems impossible to take into account all existing risks that affect 

current financial evolution. Risk ratings procedures contain internal uncertainty and that 

uncertainty will grow up with the number of simultaneously measured risks. If one takes into 

account too many different risks then the simultaneous measurements of all these risk ratings 
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will have too high variability and hence the model description can be too uncertain. To 

determine a reasonable economic space one should estimate current risks and select two, three, 

four most important risks as main factors affecting contemporary economics and financial 

system. Then it is possible to define economic space with two or three dimensions and derive 

appropriate initial distributions of economic variables as functions of most powerful risks. To 

select most valuable risks one should establish procedures that allow compare the influence of 

different risks on financial processes. That permits determine the initial state of economic space 

Rn.  

To describe financial evolution in a time term T it is necessary to forecast m main risks 

that will play major role in a particular time term and to define economic space Rm. The set of 

m risks can be the same as for the initial state, or different one. This set of m risks defines the 

target state of economic space Rm. Then it is necessary to define the transition dynamics that 

describes the move from initial set of n main risk on economic space Rn to the target set of m 

main risk on economic space Rm. Such transition dynamics from initial set of n main risk to the 

target set of m risks describes the evolution of initial representation Rn of to the target one Rm.  

That arises a lot of difficult problems. The selection of main risk factors simplifies 

description and allows neglect “small risks”. On the other hand the selection process becomes 

a part of validation procedure. As one can select and measure main risk factors, then it is 

possible to validate the initial and target set of risk and to prove or disprove initial model 

assumptions. The procedure and criteria’s to measure and to compare the power of different 

risks on financial processes should be determined and that is a separate tough problem.  

The financial modeling and forecasting on economic space is splitting into a set of 

verification procedures. It gives a chance to make financial modeling more measurable and it’s 

forecasting more faithful. In the next two Sections we demonstrate advantages of economic 

space usage for financial modeling: we present treatment of option pricing on economic space. 

Then we develop macroeconomic models similar to hydrodynamics and derive financial wave 

equations. 

Option pricing on economic space 

Option pricing theory is based on the Black-Scholes-Merton equation (BSM) (Black & Scholes, 

1973; Merton, 1973; Merton, 1998) and that is one of the most recognized equations in 

financial theory. We present an extension of BSM equation on the n-dimensional economic 

space. Further we shall mention economic space as e-space. 

The BSM equation for the price V of the option on the underlying asset with price a has 

the form: 
𝜕𝑉

𝜕𝑡
+ 𝑟𝑎

𝜕𝑉

𝜕𝑎
+

1

2
𝜎2𝑎2 𝜕2

𝜕𝑎2 𝑉 = 𝑟𝑉          (1) 

Here, r is the risk-free interest rate. A simple way to derive BSM equation (Merton, 1998; Hull, 

2009) is based on the assumption that the asset price a obeys Brownian motion dW(t) 

 

da= a c dt+a σ dW(t)        (2) 

< 𝑑𝑊(𝑡) > = 0; < 𝑑𝑊(𝑡)𝑑𝑊(𝑡 + 𝑇) > =  𝛿(𝑇)𝑑𝑡 

c – is the instantaneous rate of return on the security, and σ2  – is the instantaneous variance 

rate. The option price V = V(t,a) is a function of time t and security price a. Operator <…> 

denotes the averaging procedure.  
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Let argue option pricing on n-dimensional e-space and derive extension for BSM equation. 

Let regard options on shares of corporations and banks and mention these economic agents as 

economic particles (e-particles). Shares price of individual e-particle is determined by market 

value of e-particle and depends on its e-space coordinates or risk grades associated with 

selected e-particle. Market value of e-particle that is under the influence of n risks becomes 

function of time and coordinates of e-particle on n-dimensional e-space Rn. Thus, for fixed 

outstanding shares, shares price a of e-particle becomes a function time t and coordinates 

x=(x1,…xn) on n-dimensional e-space Rn and a=a(t,x). Hence option price V also should be a 

function of time t, coordinates x=(x1,…xn) on the n-dimensional e-space Rn and stocks price a 

and takes the form V=V(t,x,a). To derive extension for BSM equation on e-space Rn let suggest 

two assumptions.  

First, let extend (2) and assume that shares price has linear dependence on dx: 

 

𝑑a =  a c 𝑑 𝑡 + a 𝜎 𝑑𝑊(𝑡) + a 𝒌 ∙ 𝑑𝒙      (3) 

Vector k describes the input of the e-space coordinates variation dx on the value of e-particle 

and thus on shares price; kdx denotes the scalar product.  

Second, let assume that the coordinates x of the e-particle also obey Brownian walk dZ(t) 

on the n-dimensional e-space 

 

𝑑𝒙 =  𝒗𝑑𝑡 + 𝑑𝒁(𝑡)        (4) 

Vector υ defines the regular speed of the e-particle on the e-space. Brownian motion dZi(t) 

along each axis of the n-dimensional e-space follows  

 

 < 𝑑𝑍𝑖(𝑡) > = 0; < 𝑑𝑍𝑖(𝑡)𝑑𝑍𝑗(𝑡 + 𝑇) > =  𝜂𝑖
2 𝛿𝑖,𝑗𝛿(𝑇)𝑑𝑡    (5) 

Vector η=(η1,…ηn) determines the instantaneous variance rate along each axis in the e-space 

Rn. For simplicity, we assume that there are no correlations between dW(t) and dZi(t)  

 

< 𝑑𝑊(𝑡1) 𝑑𝑍𝑖(𝑡2) > = 0 

Assumptions (3-5) allow derive the equation for the option price V=V(t,x,a) as an extension of 

the BSM equation (3) on the n-dimensional e-space Rn. 

 

 
𝜕V

𝜕𝑡
+ 𝑟𝑎

𝜕V

𝜕𝑎
+ 𝑟𝑥𝑖

𝜕V

𝜕𝑥𝑖
+

1

2
𝑎2𝑞2 𝜕2V

𝜕𝑎2
+ 𝑘𝑖𝜂𝑖

2 𝜕2V

𝜕𝑎𝜕𝑥𝑖
+

1

2
𝜂𝑖

2 𝜕2V

𝜕𝑥𝑖
2 = 𝑟V     (6) 

𝑞2 = (𝜎2 + 𝑘𝑖
2 ∙ 𝜂𝑖

2) ;  𝑖 = 1, . . 𝑛 

The derivation of (6) based on Ito formula and similar to Hull (2009) and we omit it here. Here 

r is same risk-free interest rate as in (1). 

Equation (6) has the same structure as (1). It belongs to diffusion like equations and it’s 

solutions are well known.  

Let outline some issues concern option pricing on n-dimensional e-space. Equations (1,6) 

are valid if initial set of n risks that define n-dimensional e-space is constant. Due to 

considerations presented in Section 2, initial selection of n risks that determines initial e-space 

Rn can differ from final set of m risks and final e-space Rm. If during the time to expiration the 

forecast predicts that new risks can affect the e-particle value, then the option pricing should 

be corrected. For such a case the option pricing should depends on description of the transition 

from the initial e-space Rn to the final e-space Rm. Thus equation (6) has sense if initial set of 
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risks remains constant. If some new risks grow up during the term to expiration then 

assumptions (3-5) and equation (6) should be modified. Thus, original assumption (2) and BSM 

equations (1) seems fail to describe the option price V for the case with different sets of initial 

and final risks that affect the value a of the underling assets. The modification of (1,2) and (3-

6) should describe the transformation from initial e-space to the final one and that requires 

additional studies and considerations. 

Further let regard macroeconomic models on e-space. 

Macroeconomic models and financial wave equations  

Let study economics as ensemble of economic agents like banks and corporations, consumers 

and personal investors, householders and labor and so on. Let assume that each economic agent 

is described by a set of l extensive economic and financial variables that form the vector 

(u1,…ul). Introduction of economic space allows develop models that have parallels with 

physical kinetics and hydrodynamics. Let refer further economic agents as economic particles 

(e-particles). Let denote economic kinetics as approximations that describe a system of e-

particles on e-space and economic hydrodynamics as approximations that model behavior of 

macroeconomic and financial variables that are treated as economic fluids (e-fluids) on e-space.  

Economic Kinetics 

Let assume that each e-particle (each economic agent) on n-dimensional e-space Rn at moment 

t is described by coordinates x=(x1,…xn), velocity υ=(υ1,… υn), and l extensive economic and 

financial variables (u1,…ul). Let regard extensive variables because it is possible to average 

them within probability distribution. Intensive variables like prices or interest rates cannot be 

averaged directly. Enormous number of extensive variables like Value and Capital, Demand 

and Supply, Profits and Production Function and so on describe each e-particle and that 

increase complexity of description to compare with physical kinetics. Contrary to physics, 

economic and financial variables do not obey conservation laws and can change their values 

due to economic processes and their motion on e-space.  

Let assume that there are N e-particles on e-space and number of e-particles that are 

observed at point x equals N(x). Let state that velocities of e-particles at point x equal υ=(υ1,… 

υN(x)). Each e-particle has l economic variables (u1,…ul). Let assume that values of economic 

variables equal (u1i,…uli), i=1,..N(x). Each economic variable uj at point x defines 

macroeconomic variable Uj as sum of economic variables uj of N(x) e-particles at point x 

 

𝑈𝑗 = ∑ 𝑢𝑗𝑖  ;    𝑗 = 1, . . 𝑙
𝑖

;    𝑖 = 1, … 𝑁(𝑥) 

For each macroeconomic variable Uj let define analogy of impulses Pj  as 

𝑷𝑗 = ∑ 𝑢𝑗𝑖𝝊𝒊 ;    𝑗 = 1, . . 𝑙
𝑖

;    𝑖 = 1, … 𝑁(𝑥) 

Let follow Landau and Lifshitz (1981) and introduce economic analogy of Boltzmann’s 

distribution function f=f(t,x; U1,..Ul, P1,..Pl) on n-dimensional e-space that determine 

probability to observe macroeconomic variables Uj and impulses Pj  at point x at time t. Let 

define macroeconomic density function Uj(t,x)  

𝑈𝑗(𝑡, 𝒙) = ∫ 𝑈𝑗  𝑓(𝑡, 𝒙, 𝑈1, … 𝑈𝑙 , 𝑷𝟏, . . 𝑷𝒍) 𝑑𝑈1. . 𝑑𝑈𝑙𝑑𝑷1. . 𝑑𝑷𝑙 ;  𝑗 = 1, … 𝑙   (7.1)  

and impulse density Pj(t,x) as 
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𝑷𝑗(𝑡, 𝒙) = ∫ 𝑷𝑗  𝑓(𝑡, 𝒙, 𝑈1, … 𝑈𝑙, 𝑷𝟏, . . 𝑷𝒍) 𝑑𝑈1. . 𝑑𝑈𝑙𝑑𝑷1. . 𝑑𝑷𝑙  ;  𝑗 = 1, … 𝑙   (7.2) 

That allows define e-space velocity υj(t,x) of density Uj(t,x) as 

 

𝑈𝑗(𝑡, 𝒙)𝒗𝑗(𝑡, 𝒙) = 𝑷𝑗(𝑡, 𝒙) 

Densities Uj(t,x) and impulses Pj(t,x) are determined as aggregates of corresponding 

economic and financial variables of separate e-particles. Functions Uj(t,x) can describe e-space 

density of Demand and Supply, Assets and Debts, Production Function and Value Added and 

so on. E-space densities Uj(t,x) as Value and Capital, Supply and Demand play the role similar 

to mass density distribution ρ(t,x) in physical kinetics (Landau & Lifshitz, 1981). We use (7.1-

7.2) as tool to establish transition from description of economic and financial variables (u1,…ul) 

of separate economic agents to description of macroeconomic densities (U1,…Ul), Uj=Uj(t,x) 

on e-space and develop economic and financial models alike hydrodynamics. 

Economic Hydrodynamics 

In parallels to physical mass densities ρ(t,x) of physical fluids, let treat e-space densities 

U1(t,x),… Ul(t,x) like Value and Capital, Production Function and Investments, Demand and 

Supply as economic fluids. Macroeconomics describes interaction of economic and financial 

densities U1(t,x),…Ul(t,x) similar to multi-fluids hydrodynamics and appears to be extremely 

complex. Parallels between physical and economic densities permit obtain e-fluids equations 

alike to Continuity Equation and Equation of Motion for physical fluids (Landau & Lifshitz, 

1987). Let present phenomenological derivation of e-fluid equations.  

Continuity Equation for density Ui(t,x), i=1,..l takes form 

 

 
𝜕𝑈𝑖

𝜕𝑡
+ 𝑑𝑖𝑣(𝒗𝑖𝑈𝑖) = 𝑄1         (8) 

υi(t,x) - is the velocity of e-fluid Ui on e-space. Left side describes the flux of density Ui(t,x) 

through the unit volume surface on e-space and factor Q1 describes transformation of Ui(t,x). 

Contrary to physics and mass conservation law, Continuity Equations on densities don’t 

conform the value of densities and Ui(t,x) can increase or decrease in time and during the 

motion of the selected volume on e-space due to economic reasons. For example, Value in e-

space unit volume can increase in time due to economic activity and can decrease if unit volume 

moves in the direction of risk growth. We state that there are no conservation laws for economic 

and financial densities.  

Equation of Motion for density Ui(t,x) takes form  

 

𝑈𝑖 [
𝜕𝒗𝑖

𝜕𝑡
+ (𝒗𝑖 ∙ ∇)𝒗𝑖] = 𝑄2      (9) 

Left side describes the flux of Ui(t,x)υi(t,x) through the surface of unit volume on e-space, 

taking into account Continuity Equation. Q2 describes factors that change the flux. We state 

that in the first approximation extensive economic variables of different economic agents 

(different e-particles) do not interact and do not depend on the same economic variables of 

separate e-particles. For example, Production Function of e-particle does not depend on the 

Production Function of other e-particles, but depends on other financial and economic variables 

like Capital, Labor, Market Demand, Investments and so on. As well Consumption of e-particle 

does not depend on Consumption of other e-particles, but is determined by Income, Savings, 

Inflation and etc. In the first approximation we neglect any interactions between same 

economic variables of different e-particles and state that there are no economic analogies for 
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such physical factors as pressure or viscosity. We state that Q1 and Q2 in equations on Ui(t,x) 

depend on economic densities Uj(t,x) or their velocities those different from Ui(t,x). We denote 

such densities Uj(t,x) or their velocities υj(t,x) that define Q1 and Q2 and induce changes of 

particular variable Ui(t,x) as conjugate densities to Ui(t,x). For example, Production Function 

density may have conjugate densities like Capital and Labor. Conjugate variables define Q1 

and Q2 in the right hand side of Continuity Equation and Motion Equations (8,9). The simplest 

model (8,9) describes two conjugate e-fluids and for that case we derive economic wave 

equations on e-space. 

Financial wave equations 

Wave processes describe enormous amount of physical phenomena’s and play the core role in 

current understanding of Nature. Certain parallels should exist in economics and finance. Up 

now terms “waves” are used for Kondratieff waves, Inflation waves, Crisis waves, 

Demographic waves and so on. All these issues describe time oscillations only but not wave 

propagation. To describe financial wave propagation one requires determine certain space. 

Introduction of economic space allows study financial and economic wave processes that can 

be extremely important for financial analysis and crisis modeling, forecasting and managing. 

Let show that economic equations (8,9) can be origin for various wave processes and 

derive wave equations on e-space for the simplest model of two conjugate e-fluids. Let study 

relations between Money Demand and Interest Rate: the rise in Money Demand lead to Interest 

Rate growth; as well Interest Rates growth decline Demand for Money. The similar relations 

exist between Investments and Interest Rates; between Commodity Demand and Commodity 

Price etc. Relations between these variables reflect positive-negative response. Let describe 

interaction for two conjugate e-fluids model. 

Model: Money Demand – Interest Rate.  

Let argue the interaction between Money Demand and Interest Rate. Money Demand is 

extensive variables and thus Money Demand ud (t,x) of separate e-particles, separate economic 

agents in the neighborhood of point x on e-space construe Money Demand density function 

UD(t,x) (7.1). Interest Rate r(t,x) is intensive economic variable and for fixed time term 

describes Cost of Money supply US(t,x) available to e-particles at point (t,x). For given Money 

Supply US(t,x) and fixed time term Cost of Money UC(t,x):  

 

UC(t,x) = r(t,x) US(t,x) 

Thus for constant Money Supply US(t,x), the Cost of Money supply UC(t,x) depends on Interest 

Rate only. Rise in Money Demand UD(t,x) lead to growth of Interest Rate r(t,x)  and hence 

growth of Money supply Cost UC(t,x). As well growth of Money supply Cost UC(t,x) being 

induced by growth of Interest Rate r(t,x) imply decline of Money Demand UD(t,x). Thus let 

replace Interest Rate r(t,x) as intensive variable by Money supply Cost UC(t,x) as extensive 

variable taking into account that UC(t,x) depends on Interest Rate only with US(t,x) being 

constant. Hence we obtain two conjugate e-fluids model Money Demand UD(t,x) - UC(t,x) 

Money supply Cost and can argue forms of right hand side factors for equations (8,9). 

Let assume that Q1 factor in the right hand side of Continuity equation (8) on Money 

Demand density function UD is proportional to time derivative of UC(t,x) Money supply Cost 

density function with negative factor αC<0:  

 

Q1 ~ αC UC(t,x) /t 
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Q1 factor for Continuity equation on Money supply Cost density function UC is proportional to 

time derivative of Money Demand density function UD(t,x) with positive factor αD>0:  

 

Q1 ~ αD UD(t,x) /t  

Thus positive growth in time of Money Demand density UD(t,x) induce growth of Money 

supply Cost density function UC(t,x) due to rise of interest rate r(t,x). As well positive growth 

in time of Money supply Cost density UC(t,x) reduce Money Demand density function UD(t,x). 

Let state that Q2 factor for Equation of Motion (9) on Money Demand velocity υD is 

proportional to gradient  UC of Money supply Cost density function UC with negative factor 

βC<0: 

 

Q2 ~ βC  UC 

Let state that Q2 factor for Equation of Motion on Money supply Cost velocity υC is 

proportional to gradient  UD of Money Demand density function UD with positive factor 

βD>0:  

 

 Q2 ~ βD  UD  

Our assumptions means that Money Demand velocity υD decrease in the direction of positive 

gradient of Money supply Cost density function UC and Money supply Cost velocity υC 

increase in the direction with positive gradient of Money Demand density function UD. Our 

assumptions present the simplest model of possible mutual dependence of two conjugate e-

fluids like Money Demand density function UD and Money supply Cost density function UC 

on e-space. For simplicity we use money supply cost density function UC(t,x) notion to define 

dependence of Money Demand density UD(t,x) on Interest Rate r(t,x). Equations (8,9) describe 

two conjugate e-fluids model UD(t,x) - UC(t,x) of Money Demand - Cost of Money supply. 

Continuity Equations take form: 

 

 
𝜕𝑈𝐷

𝜕𝑡
+ 𝛻 ∙ (𝒗𝐷𝑈𝐷) = 𝛼𝐶

𝜕𝑈𝐶

𝜕𝑡
   ;     

𝜕𝑈𝐶

𝜕𝑡
+  𝛻 ∙ (𝒗𝐶𝑈𝐶) = 𝛼𝐷

𝜕𝑈𝐷

𝜕𝑡
 

Equations of Motion take form: 

 

 𝑈𝐷 [
𝜕𝒗𝐷

𝜕𝑡
+ (𝒗𝐷 ∙ ∇)𝒗𝐷] = 𝛽𝐶∇𝑈𝐶    ;     𝑈𝐶 [

𝜕𝒗𝐶

𝜕𝑡
+ (𝒗𝐶 ∙ ∇)𝒗𝐶] = 𝛽𝐷∇𝑈𝐷 

 𝛼𝐷 > 0 ; 𝛼𝐶 < 0  ;   𝛽𝐷 > 0 ;  𝛽𝐶 < 0 ;        (10) 

To derive wave equations let’s regard linear approximation on small disturbances qD,C for 

constant Money Demand UD  and Money supply Cost densities UC and assume that velocities 

υD,C are small. In physics similar approximations are used for derivation of acoustic wave 

equations (Landau & Lifshitz, 1987) 

 𝑈𝐷 = 𝑈𝐷0 + 𝑞𝐷  ;  𝑈𝐷0 = 𝑐𝑜𝑛𝑠𝑡      ;      𝑈𝐶 = 𝑈𝐶0 + 𝑞𝐶   ;  𝑈𝐶0 = 𝑐𝑜𝑛𝑠𝑡 

Continuity Equations on small disturbances qD,C and υD,C  takes the form 

 
𝜕𝑞𝐷

𝜕𝑡
+ 𝑈𝐷0∇ ∙ 𝒗𝐷 = 𝛼𝐶

𝜕𝑞𝐶

𝜕𝑡
   ;        

𝜕𝑞𝐶

𝜕𝑡
+ 𝑈𝐶0∇ ∙ 𝒗𝐶 = 𝛼𝐷

𝜕𝑞𝐷

𝜕𝑡
     

Equations of Motion on small velocities take the form: 
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𝑈𝐷0
𝜕𝒗𝐷

𝜕𝑡
= 𝛽𝐶∇𝑞𝐶    ;        𝑈𝐶0

𝜕𝒗𝐶

𝜕𝑡
= 𝛽𝐷∇𝑞𝐷           

The second derivation by time of Continuity Equation implies: 

 
𝜕2𝑞𝐷

𝜕𝑡2 + 𝑈𝐷0∇ ∙
𝜕

𝜕𝑡
𝒗𝐷 = 𝛼𝐶

𝜕2𝑞𝐶

𝜕𝑡2      ;  
𝜕2𝑞𝐷

𝜕𝑡2 = 𝛼𝐶(𝛼𝐷
𝜕2𝑞𝐷

𝜕𝑡2 −   𝛽𝐷∆𝑞𝐷) −   𝛽𝐶∆𝑞𝐶 

𝜕2

𝜕𝑡2
[(1 − 𝛼𝐶𝛼𝐷)

𝜕2𝑞𝐷

𝜕𝑡2
+ 𝛼𝐶𝛽𝐷∆𝑞𝐷] = −  𝛽𝐶∆(𝛼𝐷

𝜕2𝑞𝐷

𝜕𝑡2
−   𝛽𝐷∆𝑞𝐷) 

Equations on disturbances qD,C take form 

 

 [(1 − 𝛼𝐶𝛼𝐷)
𝜕4

𝜕𝑡4 + (𝛼𝐶𝛽𝐷 + 𝛽𝐶𝛼𝐷)∆
𝜕2

𝜕𝑡2 − 𝛽𝐶𝛽𝐷∆2 ] 𝑞𝐷,𝐶 = 0    (11) 

To show that equations (11) admit wave solutions let regard qD,C =q(x-ct) or take Fourier 

transforms for exp(kx-ωt) and define speed c as c=ω/k. For positive c2
1,2>0 equations (11) on 

disturbances qD,C take form of bi-wave equation: 

 

 (
𝜕2

𝜕𝑡2 − 𝑐1
2Δ) (

𝜕2

𝜕𝑡2 − 𝑐2
2Δ)𝑞𝐷,𝐶 = 0      (12)  

𝑐1,2
2 =

−(𝛼𝐷𝛽𝐶 +𝛼𝐶𝛽𝐷)+/−√(𝛼𝐷𝛽𝐶−𝛼𝐶𝛽𝐷)2+4𝛽𝐷𝛽𝐷

2(1−𝛼𝐷𝛼𝐶)
    (13) 

For (10) c2
1,2>0 if (𝛼𝐷𝛽𝐶 − 𝛼𝐶𝛽𝐷)2 + 4𝛽𝐷𝛽𝐷 > 0 

 

Bi-wave equations (12) describe propagation of waves q=q(x-ct) with speed c equals c1 or c2 

as in the direction of risks growth as in the direction of small risks values. Existence of wave 

processes on economic space allows describe economic and financial wave generation, 

propagation and interaction, permit modeling possible wave response on economic and 

financial shocks and study wave phenomena’s of financial crisis evolution. Bi-wave equations 

(12) reflect wave processes that are more complex to compare with second order wave 

equations. Green functions for bi-wave equations take form of convolution of two Green 

functions for wave equations.  

Positive-negative response is not necessary condition to derive wave equations for two 

conjugate e-fluids interacting model. For example positive response coefficients like αD=2; 

αC= βD= βC =1 delivers c2
1,2>0  and thus provide bi-wave equation regime.  

Let outline that equations (11) admit wave propagation with exponential growth of 

amplitude. For example small disturbances qD of money demand can grow as exponent 

(Appendix) in time as: 

 

𝑞𝐷 = cos(𝒌 ∙ 𝒙 − 𝜔𝑡) exp (𝛾𝑡) 

𝛾2 =
𝑘2

4𝑎
 (𝑏 + √−4𝑎𝑑  ) > 0  ;  𝜔2 =

𝑘2

4𝑎
 (𝑏 + √−4𝑎𝑑  ) − 

𝑏𝑘2

2𝑎
 

For γ>0 the solution will grow up and for γ<0 will dissipate. 

Equations (11) admit solutions (Appendix) that grow up in direction, defined by vector p: 

 

 

 



FINANCE, RISK AND ECONOMIC SPACE 

 

215 

𝑞𝐷 = cos(𝒌 ∙ 𝒙 − 𝜔𝑡) exp (𝒑 ∙ 𝒙) 

𝜔2 =
2𝑑

𝑏
(𝑘2 − 𝑝2)   ;   𝒑 = 𝒌 (√𝜀2 + 1 − 𝜀) 

These samples demonstrate possible existence of exponential amplification of small 

financial density disturbances in the simplest models of two conjugate interacting e-fluids and 

confirm that modeling on e-space can describe a wide range of wave processes. 

Conclusion 

Complexity of finance processes requires relevant methods and models. Most methods of 

theoretical physics are based on the space-time notion. To boost methods of financial modeling 

we introduce economic space notion as generalization of risk ratings.  

Risk ratings can be treated as coordinates of economic agents on discreet economic space. 

We propose that generalization of risk ratings methodologies can establish risk ratings 

measurements of n different risks on continuous economic space Rn. Financial and economic 

risks should be treated as important and necessary drivers of financial and economic evolution. 

It appears reasonable that suitable economic space should follow current financial conditions 

that are determined by set of most valuable risks and define financial dynamics. Economic 

space can have different representations for different financial conditions and that add 

complexity to description of financial dynamics. There are no ways to establish determined 

macroeconomic and financial forecasts as random nature of risks growth and decline insert 

permanent uncertainty into financial evolution. Long terms financial forecasts require 

development of evolution model on initial economic space and assumptions on future valuable 

risk configurations that will define final economic space representation in projected time term.  

Definition of economic space requires selection of main risks. Risk benchmarking is a 

separate tough problem. Possibility to measure and select most valuable risks should establish 

procedure to validate the initial and target set of risks and to prove or disprove initial model 

assumptions. It will allow compare predictions of economic and financial models with 

observations and will help outline causes of disagreement between theoretical predictions and 

observed reality. 

Economic space notion outlines complexity of financial processes and gives base for usage 

of theoretical physics methods and models. Differences between finance and physics leave no 

hopes for direct application of mathematical physics methods and models. We believe that 

finance modeling on economic space may help establish suitable forecasting and improve 

crises predictions and management. 

Our treatments of option pricing of economic agents on n-dimensional e-space Rn permit 

derive extension for BSM equation and outline additional difficulties for option pricing 

modeling. These difficulties concern possible changes of main risks that determine the current 

economic space axes. Random dynamics of main risks during time to expiration means that 

BSM equations (1,6) should be transformed into other ones on economic space with different 

axes. That effect might explain differences between predicted and observed option price 

dynamics. Correct description of these effects might rise up the accuracy for the option pricing.  

Nevertheless finance and physics are completely different systems it is reasonable study 

economic and financial models similar to physical approximations like kinetics and 

hydrodynamics. Derivation of economic and financial wave equations for the simplest models 

of interaction between Money Demand and Interest Rate opens a way for further investigation 

of financial wave processes. Wave theories play core role in physics and might help for 

financial modeling as well.  
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Economic space notion outlines the internal complexity of financial and economic systems 

and requires appropriate econometric foundations. The main problems concern the observation 

and the choice of most valuable risks, measurement of economic agents distributions on 

economic space. At present, there are no risk ratings methodologies that allow distribute 

economic agents on Rn. To establish economic space with one or two dimensions, one needs 

cooperative efforts of Central Banks, Rating Agencies, Economic and Finance Research 

Communities, Regulators, Statistical Bureaus, Businesses, etc., etc. Our work is only first step 

on that long way. 
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Appendix 

Let take the qD in the form: 

𝑞𝐷 = cos(𝒌 ∙ 𝒙 − 𝜔𝑡) exp (𝛾𝑡 + 𝒑 ∙ 𝒙)     (A1) 

Here kx denote scalar product of two vectors k and x. Let denote 

 

a=1- αDαC>1 ; b=αCβD +αD βC <0 ; d= βD βC <0 

For qD as (A1) equation (11) becomes a system of two equations: 

 

 𝑎[(𝛾2 − 𝜔2)2 − 4𝛾2𝜔2] + 𝑏 [(𝑝2 − 𝑘2)(𝛾2 − 𝜔2) + 4𝛾𝜔 𝒌 ∙ 𝒑] − 𝑑[(𝑝2 − 𝑘2)2  −
4( 𝒌 ∙ 𝒑 )2] = 0      (A2) 

4𝑎𝜔𝛾(𝛾2 − 𝜔2) + 𝑏[ 2𝜔𝛾 (𝑝2 − 𝑘2) − 2(𝛾2 − 𝜔2) 𝒌 ∙ 𝒑 ] + 4𝑑(𝑝2 − 𝑘2) 𝒌 ∙ 𝒑 = 0 

For simplicity let study two cases. 

 

Case 1. Let p=0 

Then system (A2) takes form: 

 

𝑎[(𝛾2 − 𝜔2)2 − 4𝛾2𝜔2]  − 𝑏𝑘2(𝛾2 − 𝜔2) − 𝑑𝑘4  = 0 

4𝑎𝜔𝛾(𝛾2 − 𝜔2) −  2𝑏𝜔𝛾𝑘2   = 0 

Hence, from the second equation, a>1, b<0 : 

𝜔2 = 𝛾2 −  
𝑏𝑘2

2𝑎
 

and first equation takes form 

 

𝑏2𝑘4

4𝑎
  − 4𝑎𝛾2𝜔2  −

𝑏2𝑘4

2𝑎
− 𝑑𝑘4  = 0 

Thus 
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𝑏2𝑘4

4𝑎
  − 4𝑎𝛾2𝜔2 =  −

𝑏2𝑘4

2𝑎
− 𝑑𝑘4  = 0    ;   𝛾2𝜔2 =  − 

𝑘4

4𝑎
 (  

𝑏2

4𝑎
+ 𝑑 ) > 0  

𝑏2 + 4𝑎𝑑 < 0  or (𝛼𝐷𝛽𝐶 − 𝛼𝐶𝛽𝐷)2 + 4𝛽𝐷𝛽𝐶 < 0     (A3) 

Condition (A3) means that c2
1,2 (13) of equations (11) become complex numbers. 

 

 𝛾4 −
𝑏𝑘2

2𝑎
 𝛾2 +

𝑘4(𝑏2+4𝑎𝑑)

16𝑎2
= 0    :    𝛾2

1,2
=

𝑘2

4𝑎
 (𝑏 +/−√−4𝑎𝑑  )       

Thus for condition (15) obtain  

 

 𝛾2 =
𝑘2

4𝑎
 (𝑏 + √−4𝑎𝑑  ) > 0     ;    𝜔2 =

𝑘2

4𝑎
 (𝑏 + √−4𝑎𝑑  ) −  

𝑏𝑘2

2𝑎
   

For γ > 0 amplitude of solution of equation (11) in form (A1) grow up as exp(γt). Thus wave 

propagation of small disturbances of economic spatial densities for two conjugate e-fluids 

model can go along with exponential growth of amplitude of disturbances in time. Exponential 

growth of money demand perturbations may reflect crisis trends.  

 

Case 2. γ = 0 . 

Then system (A2) takes form: 

 

𝑎𝜔4 − 𝑏 𝜔2(𝑝2 − 𝑘2) − 𝑑[(𝑝2 − 𝑘2)2  − 4( 𝒌 ∙ 𝒑 )2] = 0 

2𝑏𝜔2 𝒌 ∙ 𝒑 + 4𝑑(𝑝2 − 𝑘2) 𝒌 ∙ 𝒑 = 0 

Hence from the second equation: 

(𝑘2 − 𝑝2) =
𝑏

2𝑑
 𝜔2 > 0  ;  𝑘2 > 𝑝2 

The first equation takes form: 

 

 𝑎𝜔4 +
𝑏2

4𝑑
 𝜔4 + 4 𝑑 ( 𝒌 ∙ 𝒑 )2 = 0     ;   (𝑎 +

𝑏2

4𝑑
 ) 𝜔4 = −4 𝑑 ( 𝒌 ∙ 𝒑 )2 > 0 

For condition (A3) obtain 

 

𝜔4 = −
16 𝑑2

4𝑎𝑑 + 𝑏2
 ( 𝒌 ∙ 𝒑 )2 > 0 

Let define  as angle between vectors k and p 

𝒌 ∙ 𝒑 = 𝑘𝑝𝑐𝑜𝑠(𝜃) ;   𝜀 =
|𝑏| |cos (𝜃)|

√−(4𝑎𝑑+𝑏2)
 

Absolute values of vector p : 

𝑝 = 𝑘 (√𝜀2 + 1 − 𝜀) 

Amplitude of the wave (A1) can exponentially grow up as exp(px). Vector p belongs to 

cone that has angle θ with wave vector k that define direction of wave propagation. 
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