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Abstract.  The pricing kernel based on SPX option prices and GARCH model is 

derived and tested for monotonicity. Derivation of the risk neutral distribution is 

conducted based on the result in Breeden and Litzenberger (1978) and the 

historical density is estimated by means of our asymmetric GARCH model. 

Applying two statistical tests we are not able to reject null hypothesis of 

monotonically decreasing pricing kernel, showing that using a large dataset and 

introducing non-Gaussian innovations solves the pricing kernel puzzle posed in 

Jackwerth (2000), both in a single day and over an average of different days with 

the same options' maturity. We also evaluate the price kernel before and during 

the recent crisis and we look at the change in the shape in order to evaluate the 

difference. 

Keywords: Pricing kernel, State price density per unit probability, Risk neutral, 

Historical distribution 

Introduction 

According to economic theory, the shape of the state price density (SPD) per unit probability 

(also known as the asset pricing kernel, (Rosenberg & Engle, 2002) or stochastic discount 

factor (SDF), (Campbell, Lo, & MacKinlay, 1997)) is a decreasing function in wealth.  

(Jackwerth J. C., 2000) finds a kernel price before the crash of 1987 in agreement with 

economic theory, but a discordant result for the post-crash period. After his work, a number of 

papers have been written on this topic trying to explain the reason for this puzzle. (Rosenberg 

& Engle, 2002), (Detlefsen, Härdle, & Moro, 2007) and (Jackwerth J. C., 2004) are among 

the most interesting papers on this subject. Unfortunately, none of them found an answer to 

this puzzle. In all of these papers the authors found problems in the methodology employed 

by previous papers and tried to improve them, but the result was the same: the puzzle 

remained. 

 An answer to this puzzle has been given in (Chabi-Yo, Garcia, & Renault , 2005), where 

they argue that the main problem is the regime shifts in fundamentals: when a volatility 

change, the kernel price is no longer monotonically decreasing. In each regime they prove that 

the kernel price is consistent with economic theory, but when there is a shift in regime the 

kernel price changes in its shape and it is no longer consistent with economic theory. 

In a recent paper, (Barone-Adesi, Engle, & Mancini, 2008) compute again the kernel price 

and find kernel prices consistent with economic theory. In particular they find kernel price 

consistency for fixed maturities. They do not pool different maturities as (Aït-Sahalia & Lo, 

1998) and therefore they avoid the problem that arises when maturities are different, but they 

do not consider the change in fundamentals as a relevant aspect of their computation. Their 
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result can be explained by the fact that the sample they use is very short (3 years) and that 

throughout this period (2002 - 2004) the volatility does not change much. 

In this paper we compute the kernel price both in a single day and as an average of kernel 

prices over a period of time, holding maturity constant. We want to understand the 

implication of the changing regime using two measures of moneyness: in the first case we 

consider the kernel price as a function of two parameters, the underlying and the interest rate 

(we do not take into consideration the changing regime) and then we add third parameter – the 

volatility of the underlying. As argued in (Brown & Gibbons, 1985), under some general 

assumptions one may substitute (in estimation) consumption with the market index while 

working with asset pricing models1. That’s why in order to evaluate the kernel price we need 

to take a broad index which attempts to cover the entire economy. As it is common in this 

kind of literature to use S&P500 index, we also use data on S&P500 index prices and options 

on the S&P500 index over a period of 12 years (from the 2nd of January 1996 to the 31st 

December 2007). 

Evaluating the kernel price in a period of time, without taking into consideration the 

change in volatility, should lead to a kernel not consistent with economic theory. Surprising, 

when we compute the kernel price considering only two parameters (the underlying and the 

interest rate), the average kernel price is consistent with economic theory, with the exceptions 

of a few dates.  

To check our result we also do kernel smoothing which is similar to averaging, but it has 

the advantage of producing smooth price kernel without the spikes one might get from simple 

averaging. Another robustness check for our results is the testing of monotonicity of the 

obtained kernel price. We take our estimated average price kernel, consider its monotone 

version and then compare the monotone version with the estimated version by means of 

Kolmogorov-Smirnov test. 

In order to estimate the risk neutral distribution, we use the well-known result in 

(Breeden & Litzenberger, 1978). The difference with previous works is in the options we use. 

Instead of creating option prices through nonparametric or parametric models (all the previous 

research use artificial price of options and this could introduce a bias in the methodology), we 

use only the options available on the market. We then construct the historical density using 

the GJR GARCH model with Filtered Historical Simulation already presented in (Barone-

Adesi, Engle, & Mancini, 2008). 

As discussed in (Rosenberg & Engle, 2002), among the several GARCH models, the 

GJR GARCH with FHS has the flexibility to capture the leverage effect and the ability to fit 

daily S&P500 index returns. Then, the set of innovations estimated from historical returns and 

scaled by their volatility gives an empirical density function that incorporates excess 

skewness, kurtosis, and other extreme return behavior that is not captured in a normal density 

function. These features avoid several problems in the estimation of the kernel price. For 

example, using a simple GARCH model where the innovations are standard normal (0; 1) 

leads to a misspecification of the return distribution of the underlying index. 

Once we have the two probabilities, under the pricing and the objective measures, we take the 

ratio between the two densities, discounted by the risk-free rate, in a particular day, to 

compute the kernel price for a fixed maturity. We repeat the same procedure for all the days 

in the time series which have options with the same maturity and then we take the average of 

the kernel price through the sample. At the same time we apply kernel smoothing on the 

estimated values of the price kernel to confirm our result. 

                                                 
1The aggregated consumption is inconvenient in two ways: (1) it is hard to measure, and (2) no options on 

aggregate consumption are traded.  
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We also evaluate how the shape of the price kernel changes before and during a crisis 

(the 2008 crisis). We notice that the three periods before the crisis (2005, 2006 and 2007) 

exhibit fairly monotonically decreasing paths, while during the crisis, the kernel price remains 

monotonically decreasing, but has higher values. this is consistent with the idea that during a 

crisis investors increase the risk aversion. 

In order to evaluate the impact of the shifting regime, we repeat the computation of the 

different kernel prices considering the volatility as a parameter of the kernel function. As 

expected, results improve, but they are still quite similar, supporting our first intuition that the 

changing regime is relevant, but our methodological choices have a strong impact on the final 

result. 

The remainder of this paper is organized as follows. In section 2, we present a review of 

the literature and we define the “pricing kernel puzzle”. In section 3, we define our method to 

estimate the kernel price. We explain our application of the result of (Breeden & Litzenberger, 

1978) and we derive the risk neutral distribution. We then estimate the historical density using 

a GJR GARCH method with FHS and we take the kernel price from a particular day as well 

as the kernel price over the time series of our sample. In the last part of the section we 

conduct two statistical tests. Namely, we use two Kolmogorov type tests of the monotonicity 

of the estimated pricing kernels. In section 4, we provide further evidence of our results. First 

we plot kernel price with different maturities to prove the robustness of our methodology, 

then we take the average of these different kernel prices and we show that the average of SPD 

per unit probabilities with close maturities have a monotonically decreasing path. In section 5, 

we present the change in the kernel price shape before and during the recent crisis. In section 

6, we extend our model, using a kernel price with three parameters (underlying, volatility and 

risk-free), and in section 7 we offer conclusions. 

Review of the Literature 

In this section we derive the price kernel as in macroeconomic theory and also as in 

probability theory. We then present some methods, parametric and non-parametric, to derive 

the kernel price. 

Price kernel and investor preference 

The ratio between the risk neutral density and the historical density is known as the price 

kernel or state price density per unit probability. In order to explain the relationship between 

the risk-neutral distribution and the historical distribution we need to introduce some basic 

concepts from macroeconomic theory. In particular, we use a representative agent with a 

utility function ( ). According to economic theory (the classical von Neumann and 

Morgenstern economic theory), we have three types of investors: risk averse, risk neutral and 

risk lover. The utility function  ( ) of these investors is a twice differentiable function of 

consumption :  ( ). The common property for the three investors is the non-satiation 

property: the utility increase with consumption, e.g. more consumption is preferred to less 

consumption, and the investor is never satisfied - he never has so much wealth that getting 

more would not be at least a little bit desirable. This condition means that the first derivative 

of the utility function is always positive. On the other hand, the second derivative changes 

according to the attitude the investor has toward risk. 

If the investor is risk averse, his utility function is an increasing concave utility function. 

The risk neutral investor has a second derivative equal to zero, while the risk seeker - a 

convex utility function. 
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Defining  ( ) as the single period utility function and   as the subjective discount factor, 

we can write the intertemporal two-period utility function as 

 (       )  (  )   (    ) 

We introduce   as the amount of an asset the agent chooses to buy at time  ,   as the original 

endowment of the agent,    as the price of the asset at time   and      as the future payoff of 

the asset. The optimization problem is: 

   
 
{ (  )      (    ) } 

           

          

                
 

The first constraint is the budget constraint at time 1, while the second constraint is the 

Walrasian property, e.g. the agent will consume his entire endowment and asset's payoff at the 

last period. Substituting the constraints into the objective and setting the derivative with 

respect to   equal to zero we get: 

     [ 
  (    )

  (  )
    ]  

We define 

    [
  (    )

  (  )
]             (1)  

as the marginal rate of substitution at time  . The MRS is also known as the Stochastic 

Discount Factor (SDF) or the price kernel. Therefore the price of any asset can be expressed 

as 

     [          ]  

In a continuous case, the price of any asset can be written as 

 
  
  ∫    (  )  (  )    (  )   

 

 

 

 

(2)  

where     (  ) is the physical probability of state    (for the rest of the paper we refer to this 

probability as the historical probability) and   (  ) is the payoff of an asset.  

To define the price of an asset at time  , under the risk neutral measure, we can write equation 

(2) as: 

   
      ∫  (  )    (  )   

 

 

 (3)  
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where     (  ) is the state price density (for the rest of the paper we refer to this probability 

as the risk neutral probability). At this point, combining equation (2) and (3) we can derive 

the SDF as: 

     (  )  
   
  (  )

  (  )
 (4)  

In this case we consider a two period model where the price kernel is a function only of the 

underlying,   , and the risk free rate,  . In the following part we will see how to have a kernel 

price with more parameters. 

In their papers (Arrow, 1964) and (Pratt, 1964) find a connection between the kernel price and 

the measure of risk aversion of a representative agent. Arrow-Pratt measure of absolute risk-

aversion (ARA) is defined as: 

   (  ) 
   (  )

  (  )
  

The absolute risk aversion is an indicator of willingness to expose some amount of 

wealth to risk as a function of wealth. An agent's utility function demonstrating decreasing 

(constant or increasing) absolute risk aversion implies that her willingness to take risk 

increases (does not change or decreases) as the agent becomes wealthier. 

Classic economic theory assumes risk averse economy agents, i.e. the utility function of 

the economy is concave (mathematically    (  )  ). The following argument should unveil 

an impact of this basic property of pricing kernel behavior. 

From (1), the pricing kernel can be written as function of the marginal utility as: 

     (  )  
  (  )

  (  )
   

and its first derivative is: 

     
  (  )  

   (  )

  (  )
     (  )   

which (remember    (  )   and   (  )      ) implies     
  (  )  , or in words, the 

pricing kernel is decreasing as a function of the wealth. We are aiming to check if the pricing 

kernel is decreasing and, as a consequence, if agents in the economy are risk averse.  

 

Nonparametric and parametric estimation 

There are several methods to derive the kernel price. There are both parametric models and 

nonparametric models. In this section we give a review of the most well-known methods used 

in literature. We focus particularly on the nonparametric models because they do not assume 

any particular form for the risk neutral and historical density and also for the kernel price. 

One of the first papers to recover the price kernel in a nonparametric way is (Aït-Sahalia 

& Lo, 1998). In their work they derive the option price function by nonparametric kernel 

regression and then, applying the result in (Breeden & Litzenberger, 1978), they compute the 

risk neutral distribution. Their findings are not consistent with economic theory. Because they 
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look at the time continuity of      across time, one may understand their results as estimates 

of the average kernel price over the sample period, rather than as conditional estimates. 

Other problems in their article are discussed in (Rosenberg & Engle, 2002). In particular 

they suggest that the non-specification of the investors beliefs about future return probabilities 

could be a problem in the evaluation of the kernel price. Also they use of a very short period 

of time, 4 years, to estimate the state probabilities. Moreover, they depart from the literature 

on stochastic volatility, which suggests that future state probabilities depend more on recent 

events than past events. In fact, past events remain useful for prediction of future state 

probabilities. In order to take this into account we use a dataset of 12 years of option prices. 

A work close in spirit to (Aït-Sahalia & Lo, 1998) is (Jackwerth J. C., 2000). His article 

is one of the most interesting pertaining to this literature. Beyond the estimation technique 

used, his paper is noteworthy because it also opened up the well-known "pricing-kernel 

puzzle". In his nonparametric estimation of the kernel price, Jackwerth finds that the shape of 

this function is in accordance with economic theory before the crash of 1987, but not after the 

crash. He concludes that the reason is the mispricing of options after the crash. 

Both articles could incur some problems that cause the kernel price and the relative risk 

aversion function (RRA) to be not consistent with economic theory. In (Aït-Sahalia & Lo, 

1998), we see that, if the bandwidth changes, the RRA changes as well and this means that the 

bandwidth chosen influences the shape of the RRA; on the other hand, in (Jackwerth J. C., 

2000), the use of option prices after the crisis period could influence the shape of the kernel 

price if volatility is misspecified. 

Another nonparametric estimation model for the kernel price is given by (Barone-Adesi, 

Engle, & Mancini, 2008), where they use a procedure similar to the one used by (Rosenberg 

& Engle, 2002), but with a nonparametric estimation of the ratio             ⁄ . While in the 

papers by (Aït-Sahalia & Lo, 2000)  and (Jackwerth J. C., 2000) results are in contrast with 

the economic theory, (Barone-Adesi, Engle, & Mancini, 2008) find a kernel price which 

exhibits a fairly monotonically decreasing shape. 

Parametric methods to estimate the kernel price are often used in literature. (Jackwerth J. 

C., 2004) provides a general review on this topic, but for the purpose of our work we do not 

go into much detail on parametric estimation. As pointed out by (Birke & Pilz, 2009) there are 

no generally accepted parametric forms for asset price dynamics, for volatility surfaces or for 

call and put functions and therefore the use of parametric method may introduce systematic 

errors. 

Our goal is to test whether a different nonparametric method, starting from option pricing 

observed in the market, respects the conditions of no-arbitrage present in (Birke & Pilz, 2009). 

In particular, we test if the first derivative of the call price function is decreasing in the strike 

and the second derivative is positive. These conditions should guarantee a kernel price 

monotonically decreasing in wealth. 

It is important to stress that our kernel price is a function of three variables: the 

underlying price, the risk-free rate and volatility. In the first part, we use only two factors: the 

underlying and the risk-free rate. In last sections we introduce also volatility. 

Empirical kernel price 

In this section we compute the kernel price as the ratio of the risk-neutral and the historical 

density, discounted by the risk-free interest rate. First we describe how we compute the risk-

neutral density. Then, we explain our computation of the historical density. In each part we 

describe the dataset we use and our filter for cleaning it. 
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Theoretical backgrounds of risk-neutral density 

(Breeden & Litzenberger, 1978) shows how to derive the risk-neutral density from a set of 

call options with fixed maturity. The formula for risk-neutral density is (see Appendix A for 

derivation): 

  ( )    
   (      )

   
      (5)  

We can approximate this result for the discrete case as: 

  ( )    
    (      )    (      )     (      )

(       )(       )
      (6)  

and for puts 

  ( )    
    (      )    (      )     (      )

(       )(       )
      (7)  

Note that in equations (6) and (7) we wrote numerical derivatives for values of      and      
which are not symmetric around   . (Breeden & Litzenberger, 1978) used symmetric strikes 

while deriving (5). But having non symmetric strikes does not hurt our estimation in any 

sense; to the contrary it gives us more observations and as a result may improve our 

estimation.  

Now we discuss some other methods of deriving the risk neutral density and compare it 

to the one we use.  

A recent paper by (Figlewski, 2008) is very close in spirit to our work. In his paper he 

derives the risk neutral distribution using the same result in (Breeden & Litzenberger, 1978). 

We differ from him in some aspects. First, we use the bid and ask prices that are given on the 

market to construct butterfly spreads. e.g. for the long position the ask price is used and for 

the short position the bid price. Our choice removes negative values in the risk-neutral 

distribution and we therefore find that the no-arbitrage condition described in (Birke & Pilz, 

2009) holds. Second, we do not need to convert the bid, ask, or mid-prices into implied 

volatility to smooth the transition from call to put because we take the average of butterfly 

prices from several days with equal maturities and this improves the precision of our result. 

Other similar works are discussed in (Bahra, 1997), (Pirknert, Weigend, & Zimmermann, 

1999) and (Jackwerth J. C., 2004). 

In (Bahra, 1997), the author proposes several techniques to estimate the risk neutral 

density. For every method he explains the pros and the cons. He then assumes that the options 

prices can be derived either using a parametric method, by solving a least squares problem, or 

nonparametric only, using kernel regression. In our work, using a time series of options over a 

sample of 12 years and taking averages we avoid the parametric or nonparametric pricing step 

and therefore we rely only on pricing available on the market. 

In (Pirknert, Weigend, & Zimmermann, 1999), they use a combination approach to 

derive the risk neutral distribution. They combine the implied binomial tree and the mixture 

distributions to get the approach called “Mixture Binomial Tree”. Our work differs from their 

work due to our use of European options. In their work, they use American options and 

therefore they could have the problem of the early exercise. In our sample, we consider only 

European options to be sure to have the risk neutral density for that expiration time only. 

(Jackwerth J. C., 2004) may be considered as a general review of different methods and 

problems. He concentrates in particular on nonparametric estimation, but he gives a general 
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overview also on parametric works, sorting parametric works into classes and explaining the 

positive and negative aspects of each one. 

Historical density 

To obtain historical probability density we need to account for features of the empirical 

returns of S&P500 index. There are lots of evidence suggesting that return innovations are (i) 

not normal, (ii) volatility is stochastic and, (iii) that positive and negative shocks to return 

have diverse effect on returns' volatility (see for example (Ghysels , Harvey , & Renault , 

1996). That's why we are going to use a GARCH model together with the filtered historical 

simulation (FHS) approach used by (Barone-Adesi, Bourgoin, & Giannopoulos, 1998). FHS 

approach allows to model volatility of returns without specifying any assumption on return 

innovations. 

Among variety of GARCH models we are going to use (Glosten, Jagannathan, & Runkle, 

1993) (GJR GARCH) model. The choice of the GJR model relies on two properties: 1) its 

ability to capture an asymmetry of positive and negative returns effect on return volatility and, 

2) its fitting ability (Rosenberg & Engle, 2002) document that GJR GARCH model fits 

S&P500 returns data better than other GARCH models). 

Under the historical measure, the asymmetric GJR GARCH model is 

   
  
    

       

  
         

       
           

   

where    − the underlying price,        , and     (   )  and        when       , and 

       otherwise. The scaled return innovation,   , is drawn from the empirical density 

function  ( ), which is obtained by dividing each estimated return innovation,  ̂ , by its 

estimated conditional volatility  ̂ . This set of estimated scaled innovations gives an empirical 

density function that incorporates excess skewness, kurtosis, and other extreme return 

behavior that is not captured in a normal density function. 

 

  

Figure 1. Left: Risk-neutral distribution (red line) and the historical distribution (blue line). We take one day at 

random from our sample (11 August 2005) with maturity equal to 37 days. Right: Price kernel for this particular day 

(11 August 2005). 
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The methodology we use to estimate the historical density is as follows. We have a set of risk 

neutral densities,  (  ), for each day over 12 years. They are calculated from S&P500 index 

options with constant maturities. Our  (  ) are prices of hypothetical butterfly strategies 

constructed from two (call or put) options with strike    and two long options of the same 

type with strikes      and     . Our triplets     ,    and      are not necessary symmetric. 

For each day, we estimate the parameters of the GJR GARCH using a time series of 3500 

returns from the S&P500. Once we have the estimated parameters for each day, we simulate 

35000 paths of S&P500 index using as a distribution of    the empirical distribution of the 

normalized innovation (FHS). We estimate the probability that at maturity we exercise the 

butterfly, e.g. we count the fractions of paths that at maturity are in the range            2: 

 
 (  ) 

                                     
                     

         
  

(8)  

Once we have computed the probability for each day, we can apply the same methodology we 

use for the risk-neutral distribution. We round the butterfly moneyness to the second digit 

after the decimal point and we take the average over the sample period. 

We use the mid-strike for the butterfly and we round the moneyness  to two decimal 

places. We take the average throughout the time series and we plot the resulting distribution 

as a function of moneyness. The historical density is drawn for one day at figure 1, and 

averaged at figure 2. 

In the next subsection we explain the estimation method we use for the risk neutral 

distribution. 

Risk-neutral estimation 

We use European options on the S&P 500 index (symbol: SPX) to implement our model. We 

consider the closing prices of the out-of-the-money (OTM) put and call SPX options from 2
nd 

January 1996 to 29
th 

December 2007. It is known that OTM options are more actively traded 

than in-the-money options and by using only OTM options one can avoid the potential issues 

associated with liquidity problems.  

Option data and all the other necessary data are downloaded from OptionMetrics. We 

compute the risk-neutral density at two different maturities: 37, 46, 57 and 72 days3. The 

choice of maturities is random and the same procedure can be applied for all other maturities. 

We download all the options from our dataset with the same maturities (we provide analysis 

and graphs for four maturities: 37, 46, 57 and 72 days; for other maturities results are similar) 

and we discard the options with an implied volatility larger than 75%, an average price lower 

than 0.05 or a volume equal to 0. In table 1 we summarized the number of options available 

for each maturity. 

  

                                                 
2 In our sample we use intervals with different lengths: most of them are intervals with a length of 10 index 

points, but we also have some intervals with 25 or 50 points, and these intervals are in some cases overlapping. 

3 We work with this four maturities through the paper, although we provide sometimes graphs and p-values for 

more maturities. 
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Table 1. The options number for all maturities 

 

Panel A. Main sample (1996-2007) 

 

Maturity 36 37 38 39  43 44 45 46 

Calls 2753 2789 2667 2537  2424 2321 2318 2171 

Puts 3406 3421 3308 3217  3112 3057 3026 2870 

 

Maturity 54 57 58 59  71 72 73 74 

Calls 1879 1873 1853 1934  1460 1466 1414 1281 

Puts 2469 2488 2497 2569  1976 1985 1966 1837 

 

 

Panel B. Around crisis samples 

Maturity 37 46 57 72 

 

Aug 12, 2004 to Sep 15, 2005 

Calls 340 250 207 147 

Puts 385 297 217 179 

 

Nov 10, 2005 to Oct 10, 2006 

Calls 364   280 256 172 

Puts 424    329 303 199 

 

Jun 14, 2006 to Jun 14, 2007 

Calls 486    355 325 187 

Puts 608    441 386 250 

 



ACRN Journal of Finance and Risk Perspectives 

Vol. 1, Issue 2, p. 43-68, Dec. 2012 

ISSN 2305-7394 

 

53 

We construct then butterfly spreads using the bid-ask prices of the options. The butterfly 

spread is formed by two short call options with strike    and long two call with strikes      
and     , the same for puts. We divide the dataset and we construct a butterfly spread for 

every day. We try to use the smallest distance possible in the strikes to construct the butterfly 

spread. Following the quotation for the SPX we use a difference of 5 basis points. However, 

for the deep-out-of-the-money options we need to take into consideration a larger distance 

because there are fewer options traded. In that case, we arrive to have spreads of 10 to 50 

points. We download option prices, order by strike, from smallest to largest. We take  

 

  

  

Figure 2. Risk neutral and historical distribution as the 12 year average of  risk neutral and historical distributions 

for a fixed number of days to maturity. 

 

Oct 11, 2007 to Aug 14, 2008 

Calls 607    505 403 271 

Puts 727    609 478 301 
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the second difference of option prices using formulas (6) and (7), for calls and puts separately, 

and then combine them. We do it for each day available in our dataset. 

In figure 1 we take a day at random from our sample and we show the risk-neutral 

distribution, the historical distribution and their ratio as the price kernel. As an example, we 

take 11 August 2005, and we look at options with a maturity equal to 37 days. We see that for 

this choice, the kernel price shows a monotonically decreasing path in   , with some jumps 

because we do not smooth the curve. 

At this point, we take into consideration the moneyness of each butterfly. As reference 

moneyness of the butterfly spread, we use the moneyness of the middle strike. We round all 

the butterfly moneyness to the second decimal digit and we take the average of all the 

butterfly prices with equal moneyness4. We can now plot the risk-neutral distribution as an 

average of the butterfly prices for a fixed maturity over a twelve year period. Figure 2 draws 

the risk-neutral and historical (physical) distributions of the underlying index. As expected, 

the risk neutral distribution is shifted to the left with respect to the historical distribution. 

Kernel price 

We apply the definition given in equation (4) in order to get the kernel price. From previous 

calculations we obtain the average risk-neutral distribution for the fixed maturity and also the 

average historical density. In order to get the average kernel price we take the kernel price of 

each day and then we compute the average from all the days in our time series. Averaging 

across time allows us to increase the otherwise small number of data points. 

 

  

                                                 
4 In order to find an equal moneyness it is necessary to round the moneyness values to the second decimal digit. 

Otherwise we cannot average and we are left with a lower number of points. 
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Figure 3: SPD per unit probability as the average of the SPD per unit probability throughout the time series of 12 

years and with equal maturity. It is important to keep in mind that this SPD per unit probability is not derived from 

the two distributions given in Figure 2. 

 

It is important to recall that our kernel price is the average of the kernel prices estimated each 

day. In other words, we estimate the risk neutral and the historical densities for each day, 

calculate the price kernel and then average these daily kernels, rather than calculate average 

densities over the entire sample.  

Generally, for all different maturities we get a monotonically decreasing path for the 

kernel price and all of these are in accordance with economic theory. 

We also obtain a kernel-smoothed version of the price kernel by applying to our 

unaveraged pricing kernel the kernel smoothing. Our smoothed pricing kernels are also 

monotonic decreasing (see figure 3). 

Monotonicity testing 

In this section we introduce some monotonicity testing. We do two kinds of monotonicity 

tests. Both of them, as many nonparametric tests, involve the notion of Kolmogorov distance. 

The first one is very simple, may be not completely justified by theory but it is very intuitive. 

The second one is more thorough and is more sound statistically proves and results. 

Simple test. Our first test (call it simple), considers a monotonized version of the price kernel 

obtained earlier. We test that the estimated and monotonized versions are equal.  
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Table 2: The pricing kernel monotonicity testing 

 

Maturity, 

days 

Intuitive test Durot test 

  
  P- value   

  P- value 

 

36 Not rej. 0.3213* Not rej. 0.2398 

37 Not rej. 0.0221** Not rej. 0.2138 

38 Not rej. 0.0259** Not rej. 0.4809 

39 Not rej. 0.3402* Not rej. 0.3338 

43 Not rej. 0.1088* Not rej. 0.3535 

44 Not rej. 0.6976* Not rej. 0.1824 

45 Not rej. 0.1088* Not rej. 0.4186 

46 Not rej. 0.0259** Not rej. 0.1046 

54 Not rej. 0.1844* Not rej. 0.2855 

57 Not rej. 0.0259** Not rej. 0.2079 

58 Not rej. 0.1088* Not rej. 0.4088 

59 Not rej. 0.0343** Not rej. 0.1097 

71 Not rej. 0.1315* Not rej. 0.1021 

72 Not rej. 0.0244** Not rej. 0.1034 

73 Rej. 0.0082 Rej. 0.0493 

74 Rej. 0.00013 Not rej. .05114 

 

   In the intuitive test we use 1% confidence interval. Starred numbers denote that in this 

case    is not rejected for the 5% confidence level, double starred − for the 1%. 

   While using the Durot testing procedure we use 5% confidence level. 
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We create our monotonized version,  ̂( ), as follows. From estimation of the pricing kernel, 

    (  ), we inspect  each point  (  ) for monotonicity. If it is between its adjacent 

points, the monotonized version is defined to be equal to estimated one, otherwise − the 

monotonized version is defined to be constant and equal to previous value. More precisely, 

the monotone version is given as: 

 ̂(  )  (  )  

 ̂(    ) {
 (    )     (    )  (  )

 ̂(  )          (    )  (  )
 

where  ( ) − the estimated price kernel. 

After getting the monotone version we compare it with the estimated price kernel,  ( ), 
by means of Kolmogorov-Smirnov test5. 

Results of testing are given in the table 2, test result in “Not rej.” if     ̂   is not 

rejected and in “Rej.” − if it was rejected at the 1% significance level. Also one can observe 

p-values of    and that comes from the table is that we are not able to reject null hypothesis 

of monotonicity of the price kernel at the confidence level 1% (for some maturities it is 10%). 

Only for maturities of 73 and 74 days we reject monotonicity, possibly because of 

discretization errors. In any case this test is rather weak. Thus we are going to introduce a 

more powerful test. 

Sophisticated test. To test monotonicity of the pricing kernel more thoroughly we use a 

Kolmogorov-type test for monotonicity of a regression function  described in (Durot, 2003). 

Hypothesis testing is performed within the following regression model 

    (  )     

where, in our case    is the moneyness of the option,    is the price kernel, and    − 

random errors with mean 0. Our second test is based on the fact that   is non-increasing 

(decreasing) if and only if   ̂  , here  ( ) ∫ ( )  
 

 
        , and  ̂ is the least 

concave majorant (lcm) of  . One should reject    about monotonic decrease of pricing 

kernel in case the difference between   and  ̂ corresponding to our price kernel is too large. 

Test construction. From previous subsections we can obtain the pricing kernel, so we 

have function   given as 

          (  )
                           
→                          

As mentioned above   is non-increasing on       if and only if   is concave on     . Denote 

   integer part of    and define 

  ( ) 
 

 
∑    (     )           

    

 

   is approximation of  , thus we consider Kolmogorov-type test statistic 

    
√ 

  ̂
   
       

|  ̂( )   ( )   (9)  

                                                 
5 One can do it using MatLab standard function  kstest2. 
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where   ̂ is lcm of    and   ̂consistent estimator of   6. (Durot, 2003) proves that under 

      converges in distribution to   ‖ ̂  ‖, where   is standard Brownian motion,  ̂ 

its lcm and ‖ ‖− supremum distance. 

 

 

The first sample: 36 - 39 days 

 

The second sample: 43 - 46 days 

 

The third sample: 54, 57 - 59 days 

 

The fourth sample: 71 - 74 days 

Figure 4: SPD per unit probability over time. It is averaged over close maturities. 

                                                 

6 We use the one provided in Durot paper:  ̂ 
  

 

 (   )
∑ (       )

    
   . 
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In Table 2 results of described testing procedure are presented on the right. We can see 

that all p-values support our hypothesis, namely we cannot reject     for 5% confidence level 

(except for the price kernel obtained from 73 days maturity options where p-value is 0.0493. 

Even for the 10% confidence level most of the samples would not contradict monotonicity of 

pricing kernels. 

Averaging price kernel over time 

In this section we check the robustness of our methodology and we try to find smoothness 

criteria for smoothing our price kernels. First of all, we show different price kernels with 

maturities close to those we showed before. According to economic theory, price kernels with 

close maturities should have similar shape. Different price kernels with close maturity should 

be similar to each other. In order to check this, we create four samples: the  

 

 

 

 

Figure 5: SPD per unit probability for different maturities. Maturities are written above each figure. 
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The VIX index between 2nd of January 2004 and 29st of December 2010 

  

The sample: Aug 12, 2004 to Sep 15, 2005 The sample: Nov 10, 2005 to Oct 10, 2006 

  

The sample: Jun 14, 2006 to Jun 14, 2007 The sample: Oct 11, 2007 to Aug 14, 2008 

 

Figure 6: The four samples we use to compute the different SPD per unit probabilities over different years. 
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first one has maturities ranging 36 - 39 days, the second − 43 - 46 days, the third − 54, 57-59 

days7, and the last one consists of 71 - 74 days maturities. 

We use the approach explained in previous section. By this method we derive the price 

kernels for the maturities in all four samples and in Figure 5 we plot the results of our 

estimations. The unsmoothed kernel prices show a clearly monotonically decreasing path, 

except in some points that may be due to the discretization of the data. Our smoothed pricing 

kernels are all smoothly decreasing. In order to verify that the price kernels are monotonous 

over time, we plot the kernel price as the average of different maturities (see figure 4). In 

particular, referring to our four samples (the first one is for maturities 36 – 39 days, the 

second − 43 - 46 days, the third − 54, 57 - 59, and the last − 71 - 74 days), we take the 

average over the 4 different maturities. We expect to find a kernel price that is monotonically 

decreasing in wealth, because of the fact that we average over close maturities in our sample. 

As we see in figure 5, the kernel prices close in maturity, have similar path, supporting 

the robustness of our methodology. Test statistics for monotonicity of these price kernels are 

presented in table 2.  

In figure 4, we plot the average for each sample. We find decreasing kernel prices for 

smoothed estimation, and mainly decreasing kernel prices for unsmoothed estimation, 

although 50th and 70th samples have some jumps. In this way we were able to have some sort 

of smoothing criteria without using a method which biases our findings. 

Price Kernel around a crisis 

In this section we evaluate the change of kernel price during the crisis. In particular, we look 

at kernel prices before and during the recent financial crisis. We divide our sample in 4 

periods. Every period is from 9 to 12 months and we take periods which show a similar range 

in volatility according to the VIX index (see Figure 6). 

                                                 
7 There are no options for 55 and 56 days to maturity in OptionMetrix. 
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Estimates of pricing kernels in different periods 

We identify four different periods between August 2004 and August 2008. The first period 

goes from of August 2004 to the 15
th

 of September 2005. In this period volatility is between 

10 and 20 points. The second period is between 10 November 2005 to 10 October 2006. In 

this second period the volatility is again in a fixed range between 10 to 20 points. The third 

period, which is before the crisis period, is between 14 June 2006 and 14 June 2007. Even 

here the volatility is in a range of 10 to 20 points. The last period, the period of the beginning 

of the crisis is between 11 October 2007 and 14 August 2008. In this period the volatility is 

much higher and it is in a range between 10 and 30 points. 

For each period, we compute the price kernel by the methodology presented above. We 

fix a maturity (in this case we look at maturities of 37, 46, 57 and 72 days) and we plot the 

kernel price of each period. 

As expected, for the three periods before the crisis we get price kernels monotonically 

decreasing and very similar in shape one each other. For the kernel price of the crisis period, 

we have a different shape. It is higher for moneyness smaller than 1 and constant for 

moneyness larger than 1. For the value smaller then 1, this is exactly what we expected to 

obtain. The probability of negative outcome is higher therefore we give more weight of 

negative outcomes. On the other hand, we do not expect to have a constant kernel price for 

moneyness values larger than 1.  

In the next section, we focus only on the kernel price of the crisis period. 

Kernel Price in Crisis Time 

In the previous subsection we show kernel prices for different periods (see Fig 7). We see in 

figure 7 that the kernel prices in period where the volatility is stable (it remains in a 

determinate range of 10 to 20 points) the SPD per unit probabilities exhibit a monotonically 

decreasing shape. 

When we enter in a period of the crisis, volatility changes dramatically. In this case, we 

observe a kernel price that is no more monotonically decreasing, but decreasing on the left, 

with constant value after the moneyness equal to 1. 

However, it is interesting to notice that the method we use to derive kernel prices is 

sufficiently robust to guarantee that even in a crisis we get kernel prices in agreement (in part 

of the graph) with economic theory. 

 

  

Figure 7: The kernel prices for four samples we create looking at different levels of volatility index. 
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Kernel price as a function of volatility 

In this section we would like to extend our model and consider the kernel price as a 

function of more variables. In fact, as explained in (Chabi-Yo, Garcia, & Renault , 2005), one 

possible explanation for the non-monotonicity of the price kernel is volatility. In a previous 

section we compute the price kernel as a function of one variable: the underlying,     (  ). 
We know from (Pliska, 1986), (Karatzas, Lehoczky, & Shreve, 1987), and (Cox & Huang, 

1989) that the kernel price is characterized by at least two factors: the risk-free rate and the 

market price of risk. In our analysis we would like to consider the kernel price as a function of 

three different factors: the risk-free rate, the underlying price and the volatility. We have 

already introduced the underlying price and the risk free-rate. Now we want to introduce also 

the volatility, so     (       ). 

We saw that the risk-free rate is a parameter that does not enter in our analysis for as a 

decisive factor. Both probabilities are forward looking. In fact, the historical probability is 

seen as the probability to exercise a butterfly spread at maturity, while the risk-neutral is seen 

as the probability of a particular state. 

The moneyness is nothing else than the    ⁄ . In order to introduce the volatility we take 

as a reference the idea by (Carr & Wu, 2003). They use a moneyness defined as: 

          
    (   )

 √ 
  

where F is the futures contract price, T is the maturity time and   is the average volatility of 

the index. 

For our propose, we can change this formula to look: 
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In fact the futures price is already considered for the above explanation of the forward looking 

probabilities, while the time to maturity is constant over the sample we consider. In our case 

the volatility is not anymore the average volatility, but the implied volatility of each option. 

The procedure to derive the kernel price is again the same we have seen in the previous 

sections8 and therefore our result for maturities equal to 37, 46, 57 and 72 are as at the figure 

8. 

At figure 8 we plotted pricing kernels with volatility accounted in the moneyness 

parameter. 

                                                 
8 There is only a small difference when we round the new moneyness in order to average different periods. We 

do not take the second digit after the point, but we arrive only at the first one. 

  

Figure 8: The Kernel prices when we use moneyness factor that take into consideration underlying price and 

volatility. 
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In this case the results are consistent with the economic theory. In table 3 we give p-values for 

all maturities we have seen above. One can see that these p-values confirm our graph, namely 

for smooth pricing kernels p-values are high in both test. Only for maturities equal to 71, 72 

p-values suggest that pricing kernels are not monotone which one can also notice at the graph.   

Conclusion 

We propose a method to evaluate the kernel price in a specific day for a fixed maturity as well 

as the average of different kernel prices in a time series of 12 years for a fixed maturity. Using 

option prices on the S&P 500, we derive the risk-neutral distribution through the well-known 

result in (Breeden & Litzenberger, 1978).  

We compute the risk neutral distribution in each day where we have options with a fixed 

maturity. Then, we compute the historical density, for the same maturity, in each day, using a 

GARCH method, based on the filter historical simulation technique. We then compute the 

ratio between the two probabilities in order to derive the kernel price for that given day. We 

show that in a fixed day (chosen at random in our sample) the risk-neutral distribution implied 

in the option prices satisfies the no-arbitrage condition. 

We provide a smoothed version of the pricing kernel, to test its monotonicity. Our tests 

support the pricing kernel monotonicity. Therefore, we show that the ratio between the two 

probabilities, is monotonically decreasing in agreement with economic theory (see figure 1). 

We then show how the average of the different kernel prices across 12 years display the same 

monotonically decreasing path (see figure 3 and p-values in table 2). 

We also prove that average price kernels over time, if we take close maturities, exhibit a 

monotonically decreasing path in agreement with economic theory. 

 

Table 3: The pricing kernel monotonicity testing in case of volatility being additional parameter for moneyness. 

Table provides p-values for monotonicity tests. 

 

Maturity Intuitive Durot Maturity Intuitive Durot 

  

36 0.7651 1.0000 54 0.1489 1.0000 

37 0.2951 1.0000 57 0.4075 0.5313 

38 0.2823 0.9401 58 0.5480 0.9037 

39 0.0569 1.0000 59 0.2436 0.0058 

43 0.1078 0.9715 71 0.0042 0.0000 

44 0.0372 0.5398 72 0.0042 0.0000 

45 0.2823 0.9363 73 0.6403 0.1268 

46 0.0569 0.8069 74 0.0000 0.0446 
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Furthermore, we try to explain the reason why with different methods it could be 

possible to incur into the “pricing kernel puzzle” and have a different shapes for the kernel 

price. We can conclude that in most cases the model used to estimate the kernel price or the 

sample taken into consideration could introduce some errors in the estimation of the kernel 

price. 

In the last part, we show the changing in shape of different price kernels before and 

during the recent crisis. We see that before the crisis the price kernels are monotonically 

decreasing while during the crisis it becomes decreasing in a part and then constant for 

moneyness value higher than 1. We understand this result in a very simple way: the risk 

neutral probability changes faster with respect to the historical one and therefore the ratio 

between the two remain constant. 
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Appendix A. Derivation of risk-neutral density 

We start from a portfolio with two short call options with strike   and long two call with 

strikes     and     and consider    ⁄  shares of this portfolio. The result is a butterfly 

spread which pays nothing outside the interval          . Letting   tend to zero, the 

payoff function of the butterfly tends to a Dirac delta function with mass at  9, i.e. this is 

nothing else than an Arrow-Debreu security paying $1 if      and nothing otherwise (see 

(Arrow, 1964)). In this case, define   as the strike price,     the value of the underlying today, 

  as the interest rate, and   as the maturity time, the butterfly price is given by 

           
 

  
   (        )  (          )  (          )  

taking limit of this expression as     we get 

    
   
          (  ) 

   (      )

   
  (1)  

Now substitute the butterfly payoff,           (  )           (  ), into equation (3) we get 

that the price of the butterfly is: 

               ∫   (  )   

   

   

  

If we take limit as     and calculate this integral using properties of Dirac delta function, 

we get that 

    
   
                 (  )       (2)   

Rearranging  equations (10) and (11) we can have that 

    
   
                 (  ) 

   (      )

   
       (3)   

This result suggests that the second derivative of a call price (we will see that it is also 

true for a put price) with respect to the strike price gives the risk neutral distribution10 

  (  )  
  
   (      )

   
       

                                                 
9  More formally, payoff of the butterfly is            (  )           (  ), or when     it is 

                (  )   (  ). 

10 This can also be obtained by differentiating  (      ) ∫  
   (    ) (  )   

 

 
 w.r.t.    as in (Birke & 

Pilz, 2009) 
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In the next part of this section we see how to apply this result in the discrete case. 

In the following, we consider three call options with strikes             , where         
    . We have seen that the price of a call option can be written as: 

 (      ) ∫  
   (    ) (  )   

 

 

 

We define  ( ) as the cumulative distribution function, f( ) as the probability density, 

 (      ) as the price of a European call option,  (      ) as the price of a European put 

option, and   as the strike price of the reference option. According to the result in (Breeden & 

Litzenberger, 1978) taking the first derivative with respect to the strike price, we get: 

   (      )

   
 
 

  
[∫     (    ) (  )   

 

 

]

     [ (   ) ( ) ∫   (  )   

 

 

]     ∫   (  )   

 

 

      (   ( )) 

Solving for  ( ) one gets: 

 ( )    
  (      )

  
   

Now, taking the second derivative, we have equation (5). 

 


